You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpstrf.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. *> \brief \b ZPSTRF computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPSTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpstrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpstrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpstrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * DOUBLE PRECISION TOL
  25. * INTEGER INFO, LDA, N, RANK
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * )
  30. * DOUBLE PRECISION WORK( 2*N )
  31. * INTEGER PIV( N )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZPSTRF computes the Cholesky factorization with complete
  41. *> pivoting of a complex Hermitian positive semidefinite matrix A.
  42. *>
  43. *> The factorization has the form
  44. *> P**T * A * P = U**H * U , if UPLO = 'U',
  45. *> P**T * A * P = L * L**H, if UPLO = 'L',
  46. *> where U is an upper triangular matrix and L is lower triangular, and
  47. *> P is stored as vector PIV.
  48. *>
  49. *> This algorithm does not attempt to check that A is positive
  50. *> semidefinite. This version of the algorithm calls level 3 BLAS.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the upper or lower triangular part of the
  60. *> symmetric matrix A is stored.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The order of the matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] A
  72. *> \verbatim
  73. *> A is COMPLEX*16 array, dimension (LDA,N)
  74. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  75. *> n by n upper triangular part of A contains the upper
  76. *> triangular part of the matrix A, and the strictly lower
  77. *> triangular part of A is not referenced. If UPLO = 'L', the
  78. *> leading n by n lower triangular part of A contains the lower
  79. *> triangular part of the matrix A, and the strictly upper
  80. *> triangular part of A is not referenced.
  81. *>
  82. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  83. *> factorization as above.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDA
  87. *> \verbatim
  88. *> LDA is INTEGER
  89. *> The leading dimension of the array A. LDA >= max(1,N).
  90. *> \endverbatim
  91. *>
  92. *> \param[out] PIV
  93. *> \verbatim
  94. *> PIV is INTEGER array, dimension (N)
  95. *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] RANK
  99. *> \verbatim
  100. *> RANK is INTEGER
  101. *> The rank of A given by the number of steps the algorithm
  102. *> completed.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] TOL
  106. *> \verbatim
  107. *> TOL is DOUBLE PRECISION
  108. *> User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  109. *> will be used. The algorithm terminates at the (K-1)st step
  110. *> if the pivot <= TOL.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  116. *> Work space.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] INFO
  120. *> \verbatim
  121. *> INFO is INTEGER
  122. *> < 0: If INFO = -K, the K-th argument had an illegal value,
  123. *> = 0: algorithm completed successfully, and
  124. *> > 0: the matrix A is either rank deficient with computed rank
  125. *> as returned in RANK, or is not positive semidefinite. See
  126. *> Section 7 of LAPACK Working Note #161 for further
  127. *> information.
  128. *> \endverbatim
  129. *
  130. * Authors:
  131. * ========
  132. *
  133. *> \author Univ. of Tennessee
  134. *> \author Univ. of California Berkeley
  135. *> \author Univ. of Colorado Denver
  136. *> \author NAG Ltd.
  137. *
  138. *> \ingroup complex16OTHERcomputational
  139. *
  140. * =====================================================================
  141. SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142. *
  143. * -- LAPACK computational routine --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. *
  147. * .. Scalar Arguments ..
  148. DOUBLE PRECISION TOL
  149. INTEGER INFO, LDA, N, RANK
  150. CHARACTER UPLO
  151. * ..
  152. * .. Array Arguments ..
  153. COMPLEX*16 A( LDA, * )
  154. DOUBLE PRECISION WORK( 2*N )
  155. INTEGER PIV( N )
  156. * ..
  157. *
  158. * =====================================================================
  159. *
  160. * .. Parameters ..
  161. DOUBLE PRECISION ONE, ZERO
  162. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163. COMPLEX*16 CONE
  164. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  165. * ..
  166. * .. Local Scalars ..
  167. COMPLEX*16 ZTEMP
  168. DOUBLE PRECISION AJJ, DSTOP, DTEMP
  169. INTEGER I, ITEMP, J, JB, K, NB, PVT
  170. LOGICAL UPPER
  171. * ..
  172. * .. External Functions ..
  173. DOUBLE PRECISION DLAMCH
  174. INTEGER ILAENV
  175. LOGICAL LSAME, DISNAN
  176. EXTERNAL DLAMCH, ILAENV, LSAME, DISNAN
  177. * ..
  178. * .. External Subroutines ..
  179. EXTERNAL ZDSCAL, ZGEMV, ZHERK, ZLACGV, ZPSTF2, ZSWAP,
  180. $ XERBLA
  181. * ..
  182. * .. Intrinsic Functions ..
  183. INTRINSIC DBLE, DCONJG, MAX, MIN, SQRT, MAXLOC
  184. * ..
  185. * .. Executable Statements ..
  186. *
  187. * Test the input parameters.
  188. *
  189. INFO = 0
  190. UPPER = LSAME( UPLO, 'U' )
  191. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  192. INFO = -1
  193. ELSE IF( N.LT.0 ) THEN
  194. INFO = -2
  195. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  196. INFO = -4
  197. END IF
  198. IF( INFO.NE.0 ) THEN
  199. CALL XERBLA( 'ZPSTRF', -INFO )
  200. RETURN
  201. END IF
  202. *
  203. * Quick return if possible
  204. *
  205. IF( N.EQ.0 )
  206. $ RETURN
  207. *
  208. * Get block size
  209. *
  210. NB = ILAENV( 1, 'ZPOTRF', UPLO, N, -1, -1, -1 )
  211. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  212. *
  213. * Use unblocked code
  214. *
  215. CALL ZPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  216. $ INFO )
  217. GO TO 230
  218. *
  219. ELSE
  220. *
  221. * Initialize PIV
  222. *
  223. DO 100 I = 1, N
  224. PIV( I ) = I
  225. 100 CONTINUE
  226. *
  227. * Compute stopping value
  228. *
  229. DO 110 I = 1, N
  230. WORK( I ) = DBLE( A( I, I ) )
  231. 110 CONTINUE
  232. PVT = MAXLOC( WORK( 1:N ), 1 )
  233. AJJ = DBLE( A( PVT, PVT ) )
  234. IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  235. RANK = 0
  236. INFO = 1
  237. GO TO 230
  238. END IF
  239. *
  240. * Compute stopping value if not supplied
  241. *
  242. IF( TOL.LT.ZERO ) THEN
  243. DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  244. ELSE
  245. DSTOP = TOL
  246. END IF
  247. *
  248. *
  249. IF( UPPER ) THEN
  250. *
  251. * Compute the Cholesky factorization P**T * A * P = U**H * U
  252. *
  253. DO 160 K = 1, N, NB
  254. *
  255. * Account for last block not being NB wide
  256. *
  257. JB = MIN( NB, N-K+1 )
  258. *
  259. * Set relevant part of first half of WORK to zero,
  260. * holds dot products
  261. *
  262. DO 120 I = K, N
  263. WORK( I ) = 0
  264. 120 CONTINUE
  265. *
  266. DO 150 J = K, K + JB - 1
  267. *
  268. * Find pivot, test for exit, else swap rows and columns
  269. * Update dot products, compute possible pivots which are
  270. * stored in the second half of WORK
  271. *
  272. DO 130 I = J, N
  273. *
  274. IF( J.GT.K ) THEN
  275. WORK( I ) = WORK( I ) +
  276. $ DBLE( DCONJG( A( J-1, I ) )*
  277. $ A( J-1, I ) )
  278. END IF
  279. WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  280. *
  281. 130 CONTINUE
  282. *
  283. IF( J.GT.1 ) THEN
  284. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  285. PVT = ITEMP + J - 1
  286. AJJ = WORK( N+PVT )
  287. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  288. A( J, J ) = AJJ
  289. GO TO 220
  290. END IF
  291. END IF
  292. *
  293. IF( J.NE.PVT ) THEN
  294. *
  295. * Pivot OK, so can now swap pivot rows and columns
  296. *
  297. A( PVT, PVT ) = A( J, J )
  298. CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  299. IF( PVT.LT.N )
  300. $ CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
  301. $ A( PVT, PVT+1 ), LDA )
  302. DO 140 I = J + 1, PVT - 1
  303. ZTEMP = DCONJG( A( J, I ) )
  304. A( J, I ) = DCONJG( A( I, PVT ) )
  305. A( I, PVT ) = ZTEMP
  306. 140 CONTINUE
  307. A( J, PVT ) = DCONJG( A( J, PVT ) )
  308. *
  309. * Swap dot products and PIV
  310. *
  311. DTEMP = WORK( J )
  312. WORK( J ) = WORK( PVT )
  313. WORK( PVT ) = DTEMP
  314. ITEMP = PIV( PVT )
  315. PIV( PVT ) = PIV( J )
  316. PIV( J ) = ITEMP
  317. END IF
  318. *
  319. AJJ = SQRT( AJJ )
  320. A( J, J ) = AJJ
  321. *
  322. * Compute elements J+1:N of row J.
  323. *
  324. IF( J.LT.N ) THEN
  325. CALL ZLACGV( J-1, A( 1, J ), 1 )
  326. CALL ZGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ),
  327. $ LDA, A( K, J ), 1, CONE, A( J, J+1 ),
  328. $ LDA )
  329. CALL ZLACGV( J-1, A( 1, J ), 1 )
  330. CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  331. END IF
  332. *
  333. 150 CONTINUE
  334. *
  335. * Update trailing matrix, J already incremented
  336. *
  337. IF( K+JB.LE.N ) THEN
  338. CALL ZHERK( 'Upper', 'Conj Trans', N-J+1, JB, -ONE,
  339. $ A( K, J ), LDA, ONE, A( J, J ), LDA )
  340. END IF
  341. *
  342. 160 CONTINUE
  343. *
  344. ELSE
  345. *
  346. * Compute the Cholesky factorization P**T * A * P = L * L**H
  347. *
  348. DO 210 K = 1, N, NB
  349. *
  350. * Account for last block not being NB wide
  351. *
  352. JB = MIN( NB, N-K+1 )
  353. *
  354. * Set relevant part of first half of WORK to zero,
  355. * holds dot products
  356. *
  357. DO 170 I = K, N
  358. WORK( I ) = 0
  359. 170 CONTINUE
  360. *
  361. DO 200 J = K, K + JB - 1
  362. *
  363. * Find pivot, test for exit, else swap rows and columns
  364. * Update dot products, compute possible pivots which are
  365. * stored in the second half of WORK
  366. *
  367. DO 180 I = J, N
  368. *
  369. IF( J.GT.K ) THEN
  370. WORK( I ) = WORK( I ) +
  371. $ DBLE( DCONJG( A( I, J-1 ) )*
  372. $ A( I, J-1 ) )
  373. END IF
  374. WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  375. *
  376. 180 CONTINUE
  377. *
  378. IF( J.GT.1 ) THEN
  379. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  380. PVT = ITEMP + J - 1
  381. AJJ = WORK( N+PVT )
  382. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  383. A( J, J ) = AJJ
  384. GO TO 220
  385. END IF
  386. END IF
  387. *
  388. IF( J.NE.PVT ) THEN
  389. *
  390. * Pivot OK, so can now swap pivot rows and columns
  391. *
  392. A( PVT, PVT ) = A( J, J )
  393. CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  394. IF( PVT.LT.N )
  395. $ CALL ZSWAP( N-PVT, A( PVT+1, J ), 1,
  396. $ A( PVT+1, PVT ), 1 )
  397. DO 190 I = J + 1, PVT - 1
  398. ZTEMP = DCONJG( A( I, J ) )
  399. A( I, J ) = DCONJG( A( PVT, I ) )
  400. A( PVT, I ) = ZTEMP
  401. 190 CONTINUE
  402. A( PVT, J ) = DCONJG( A( PVT, J ) )
  403. *
  404. *
  405. * Swap dot products and PIV
  406. *
  407. DTEMP = WORK( J )
  408. WORK( J ) = WORK( PVT )
  409. WORK( PVT ) = DTEMP
  410. ITEMP = PIV( PVT )
  411. PIV( PVT ) = PIV( J )
  412. PIV( J ) = ITEMP
  413. END IF
  414. *
  415. AJJ = SQRT( AJJ )
  416. A( J, J ) = AJJ
  417. *
  418. * Compute elements J+1:N of column J.
  419. *
  420. IF( J.LT.N ) THEN
  421. CALL ZLACGV( J-1, A( J, 1 ), LDA )
  422. CALL ZGEMV( 'No Trans', N-J, J-K, -CONE,
  423. $ A( J+1, K ), LDA, A( J, K ), LDA, CONE,
  424. $ A( J+1, J ), 1 )
  425. CALL ZLACGV( J-1, A( J, 1 ), LDA )
  426. CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  427. END IF
  428. *
  429. 200 CONTINUE
  430. *
  431. * Update trailing matrix, J already incremented
  432. *
  433. IF( K+JB.LE.N ) THEN
  434. CALL ZHERK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  435. $ A( J, K ), LDA, ONE, A( J, J ), LDA )
  436. END IF
  437. *
  438. 210 CONTINUE
  439. *
  440. END IF
  441. END IF
  442. *
  443. * Ran to completion, A has full rank
  444. *
  445. RANK = N
  446. *
  447. GO TO 230
  448. 220 CONTINUE
  449. *
  450. * Rank is the number of steps completed. Set INFO = 1 to signal
  451. * that the factorization cannot be used to solve a system.
  452. *
  453. RANK = J - 1
  454. INFO = 1
  455. *
  456. 230 CONTINUE
  457. RETURN
  458. *
  459. * End of ZPSTRF
  460. *
  461. END