You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpftrs.f 9.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. *> \brief \b ZPFTRS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPFTRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpftrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpftrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpftrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, LDB, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 A( 0: * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZPFTRS solves a system of linear equations A*X = B with a Hermitian
  38. *> positive definite matrix A using the Cholesky factorization
  39. *> A = U**H*U or A = L*L**H computed by ZPFTRF.
  40. *> \endverbatim
  41. *
  42. * Arguments:
  43. * ==========
  44. *
  45. *> \param[in] TRANSR
  46. *> \verbatim
  47. *> TRANSR is CHARACTER*1
  48. *> = 'N': The Normal TRANSR of RFP A is stored;
  49. *> = 'C': The Conjugate-transpose TRANSR of RFP A is stored.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> = 'U': Upper triangle of RFP A is stored;
  56. *> = 'L': Lower triangle of RFP A is stored.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> The order of the matrix A. N >= 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] NRHS
  66. *> \verbatim
  67. *> NRHS is INTEGER
  68. *> The number of right hand sides, i.e., the number of columns
  69. *> of the matrix B. NRHS >= 0.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] A
  73. *> \verbatim
  74. *> A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
  75. *> The triangular factor U or L from the Cholesky factorization
  76. *> of RFP A = U**H*U or RFP A = L*L**H, as computed by ZPFTRF.
  77. *> See note below for more details about RFP A.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] B
  81. *> \verbatim
  82. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  83. *> On entry, the right hand side matrix B.
  84. *> On exit, the solution matrix X.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] LDB
  88. *> \verbatim
  89. *> LDB is INTEGER
  90. *> The leading dimension of the array B. LDB >= max(1,N).
  91. *> \endverbatim
  92. *>
  93. *> \param[out] INFO
  94. *> \verbatim
  95. *> INFO is INTEGER
  96. *> = 0: successful exit
  97. *> < 0: if INFO = -i, the i-th argument had an illegal value
  98. *> \endverbatim
  99. *
  100. * Authors:
  101. * ========
  102. *
  103. *> \author Univ. of Tennessee
  104. *> \author Univ. of California Berkeley
  105. *> \author Univ. of Colorado Denver
  106. *> \author NAG Ltd.
  107. *
  108. *> \ingroup complex16OTHERcomputational
  109. *
  110. *> \par Further Details:
  111. * =====================
  112. *>
  113. *> \verbatim
  114. *>
  115. *> We first consider Standard Packed Format when N is even.
  116. *> We give an example where N = 6.
  117. *>
  118. *> AP is Upper AP is Lower
  119. *>
  120. *> 00 01 02 03 04 05 00
  121. *> 11 12 13 14 15 10 11
  122. *> 22 23 24 25 20 21 22
  123. *> 33 34 35 30 31 32 33
  124. *> 44 45 40 41 42 43 44
  125. *> 55 50 51 52 53 54 55
  126. *>
  127. *>
  128. *> Let TRANSR = 'N'. RFP holds AP as follows:
  129. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  130. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  131. *> conjugate-transpose of the first three columns of AP upper.
  132. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  133. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  134. *> conjugate-transpose of the last three columns of AP lower.
  135. *> To denote conjugate we place -- above the element. This covers the
  136. *> case N even and TRANSR = 'N'.
  137. *>
  138. *> RFP A RFP A
  139. *>
  140. *> -- -- --
  141. *> 03 04 05 33 43 53
  142. *> -- --
  143. *> 13 14 15 00 44 54
  144. *> --
  145. *> 23 24 25 10 11 55
  146. *>
  147. *> 33 34 35 20 21 22
  148. *> --
  149. *> 00 44 45 30 31 32
  150. *> -- --
  151. *> 01 11 55 40 41 42
  152. *> -- -- --
  153. *> 02 12 22 50 51 52
  154. *>
  155. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  156. *> transpose of RFP A above. One therefore gets:
  157. *>
  158. *>
  159. *> RFP A RFP A
  160. *>
  161. *> -- -- -- -- -- -- -- -- -- --
  162. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  163. *> -- -- -- -- -- -- -- -- -- --
  164. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  165. *> -- -- -- -- -- -- -- -- -- --
  166. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  167. *>
  168. *>
  169. *> We next consider Standard Packed Format when N is odd.
  170. *> We give an example where N = 5.
  171. *>
  172. *> AP is Upper AP is Lower
  173. *>
  174. *> 00 01 02 03 04 00
  175. *> 11 12 13 14 10 11
  176. *> 22 23 24 20 21 22
  177. *> 33 34 30 31 32 33
  178. *> 44 40 41 42 43 44
  179. *>
  180. *>
  181. *> Let TRANSR = 'N'. RFP holds AP as follows:
  182. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  183. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  184. *> conjugate-transpose of the first two columns of AP upper.
  185. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  186. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  187. *> conjugate-transpose of the last two columns of AP lower.
  188. *> To denote conjugate we place -- above the element. This covers the
  189. *> case N odd and TRANSR = 'N'.
  190. *>
  191. *> RFP A RFP A
  192. *>
  193. *> -- --
  194. *> 02 03 04 00 33 43
  195. *> --
  196. *> 12 13 14 10 11 44
  197. *>
  198. *> 22 23 24 20 21 22
  199. *> --
  200. *> 00 33 34 30 31 32
  201. *> -- --
  202. *> 01 11 44 40 41 42
  203. *>
  204. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  205. *> transpose of RFP A above. One therefore gets:
  206. *>
  207. *>
  208. *> RFP A RFP A
  209. *>
  210. *> -- -- -- -- -- -- -- -- --
  211. *> 02 12 22 00 01 00 10 20 30 40 50
  212. *> -- -- -- -- -- -- -- -- --
  213. *> 03 13 23 33 11 33 11 21 31 41 51
  214. *> -- -- -- -- -- -- -- -- --
  215. *> 04 14 24 34 44 43 44 22 32 42 52
  216. *> \endverbatim
  217. *>
  218. * =====================================================================
  219. SUBROUTINE ZPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
  220. *
  221. * -- LAPACK computational routine --
  222. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  223. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  224. *
  225. * .. Scalar Arguments ..
  226. CHARACTER TRANSR, UPLO
  227. INTEGER INFO, LDB, N, NRHS
  228. * ..
  229. * .. Array Arguments ..
  230. COMPLEX*16 A( 0: * ), B( LDB, * )
  231. * ..
  232. *
  233. * =====================================================================
  234. *
  235. * .. Parameters ..
  236. COMPLEX*16 CONE
  237. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  238. * ..
  239. * .. Local Scalars ..
  240. LOGICAL LOWER, NORMALTRANSR
  241. * ..
  242. * .. External Functions ..
  243. LOGICAL LSAME
  244. EXTERNAL LSAME
  245. * ..
  246. * .. External Subroutines ..
  247. EXTERNAL XERBLA, ZTFSM
  248. * ..
  249. * .. Intrinsic Functions ..
  250. INTRINSIC MAX
  251. * ..
  252. * .. Executable Statements ..
  253. *
  254. * Test the input parameters.
  255. *
  256. INFO = 0
  257. NORMALTRANSR = LSAME( TRANSR, 'N' )
  258. LOWER = LSAME( UPLO, 'L' )
  259. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  260. INFO = -1
  261. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  262. INFO = -2
  263. ELSE IF( N.LT.0 ) THEN
  264. INFO = -3
  265. ELSE IF( NRHS.LT.0 ) THEN
  266. INFO = -4
  267. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  268. INFO = -7
  269. END IF
  270. IF( INFO.NE.0 ) THEN
  271. CALL XERBLA( 'ZPFTRS', -INFO )
  272. RETURN
  273. END IF
  274. *
  275. * Quick return if possible
  276. *
  277. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  278. $ RETURN
  279. *
  280. * start execution: there are two triangular solves
  281. *
  282. IF( LOWER ) THEN
  283. CALL ZTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, CONE, A, B,
  284. $ LDB )
  285. CALL ZTFSM( TRANSR, 'L', UPLO, 'C', 'N', N, NRHS, CONE, A, B,
  286. $ LDB )
  287. ELSE
  288. CALL ZTFSM( TRANSR, 'L', UPLO, 'C', 'N', N, NRHS, CONE, A, B,
  289. $ LDB )
  290. CALL ZTFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, CONE, A, B,
  291. $ LDB )
  292. END IF
  293. *
  294. RETURN
  295. *
  296. * End of ZPFTRS
  297. *
  298. END