You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zla_gbamv.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. *> \brief \b ZLA_GBAMV performs a matrix-vector operation to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLA_GBAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
  22. * INCX, BETA, Y, INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION ALPHA, BETA
  26. * INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 AB( LDAB, * ), X( * )
  30. * DOUBLE PRECISION Y( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLA_GBAMV performs one of the matrix-vector operations
  40. *>
  41. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  42. *> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
  43. *>
  44. *> where alpha and beta are scalars, x and y are vectors and A is an
  45. *> m by n matrix.
  46. *>
  47. *> This function is primarily used in calculating error bounds.
  48. *> To protect against underflow during evaluation, components in
  49. *> the resulting vector are perturbed away from zero by (N+1)
  50. *> times the underflow threshold. To prevent unnecessarily large
  51. *> errors for block-structure embedded in general matrices,
  52. *> "symbolically" zero components are not perturbed. A zero
  53. *> entry is considered "symbolic" if all multiplications involved
  54. *> in computing that entry have at least one zero multiplicand.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] TRANS
  61. *> \verbatim
  62. *> TRANS is INTEGER
  63. *> On entry, TRANS specifies the operation to be performed as
  64. *> follows:
  65. *>
  66. *> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
  67. *> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  68. *> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  69. *>
  70. *> Unchanged on exit.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] M
  74. *> \verbatim
  75. *> M is INTEGER
  76. *> On entry, M specifies the number of rows of the matrix A.
  77. *> M must be at least zero.
  78. *> Unchanged on exit.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] N
  82. *> \verbatim
  83. *> N is INTEGER
  84. *> On entry, N specifies the number of columns of the matrix A.
  85. *> N must be at least zero.
  86. *> Unchanged on exit.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] KL
  90. *> \verbatim
  91. *> KL is INTEGER
  92. *> The number of subdiagonals within the band of A. KL >= 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] KU
  96. *> \verbatim
  97. *> KU is INTEGER
  98. *> The number of superdiagonals within the band of A. KU >= 0.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] ALPHA
  102. *> \verbatim
  103. *> ALPHA is DOUBLE PRECISION
  104. *> On entry, ALPHA specifies the scalar alpha.
  105. *> Unchanged on exit.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] AB
  109. *> \verbatim
  110. *> AB is COMPLEX*16 array, dimension ( LDAB, n )
  111. *> Before entry, the leading m by n part of the array AB must
  112. *> contain the matrix of coefficients.
  113. *> Unchanged on exit.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDAB
  117. *> \verbatim
  118. *> LDAB is INTEGER
  119. *> On entry, LDAB specifies the first dimension of AB as declared
  120. *> in the calling (sub) program. LDAB must be at least
  121. *> max( 1, m ).
  122. *> Unchanged on exit.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] X
  126. *> \verbatim
  127. *> X is COMPLEX*16 array, dimension
  128. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  129. *> and at least
  130. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  131. *> Before entry, the incremented array X must contain the
  132. *> vector x.
  133. *> Unchanged on exit.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] INCX
  137. *> \verbatim
  138. *> INCX is INTEGER
  139. *> On entry, INCX specifies the increment for the elements of
  140. *> X. INCX must not be zero.
  141. *> Unchanged on exit.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] BETA
  145. *> \verbatim
  146. *> BETA is DOUBLE PRECISION
  147. *> On entry, BETA specifies the scalar beta. When BETA is
  148. *> supplied as zero then Y need not be set on input.
  149. *> Unchanged on exit.
  150. *> \endverbatim
  151. *>
  152. *> \param[in,out] Y
  153. *> \verbatim
  154. *> Y is DOUBLE PRECISION array, dimension
  155. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  156. *> and at least
  157. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  158. *> Before entry with BETA non-zero, the incremented array Y
  159. *> must contain the vector y. On exit, Y is overwritten by the
  160. *> updated vector y.
  161. *> \endverbatim
  162. *>
  163. *> \param[in] INCY
  164. *> \verbatim
  165. *> INCY is INTEGER
  166. *> On entry, INCY specifies the increment for the elements of
  167. *> Y. INCY must not be zero.
  168. *> Unchanged on exit.
  169. *>
  170. *> Level 2 Blas routine.
  171. *> \endverbatim
  172. *
  173. * Authors:
  174. * ========
  175. *
  176. *> \author Univ. of Tennessee
  177. *> \author Univ. of California Berkeley
  178. *> \author Univ. of Colorado Denver
  179. *> \author NAG Ltd.
  180. *
  181. *> \ingroup complex16GBcomputational
  182. *
  183. * =====================================================================
  184. SUBROUTINE ZLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
  185. $ INCX, BETA, Y, INCY )
  186. *
  187. * -- LAPACK computational routine --
  188. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  189. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  190. *
  191. * .. Scalar Arguments ..
  192. DOUBLE PRECISION ALPHA, BETA
  193. INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
  194. * ..
  195. * .. Array Arguments ..
  196. COMPLEX*16 AB( LDAB, * ), X( * )
  197. DOUBLE PRECISION Y( * )
  198. * ..
  199. *
  200. * =====================================================================
  201. *
  202. * .. Parameters ..
  203. COMPLEX*16 ONE, ZERO
  204. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  205. * ..
  206. * .. Local Scalars ..
  207. LOGICAL SYMB_ZERO
  208. DOUBLE PRECISION TEMP, SAFE1
  209. INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
  210. COMPLEX*16 CDUM
  211. * ..
  212. * .. External Subroutines ..
  213. EXTERNAL XERBLA, DLAMCH
  214. DOUBLE PRECISION DLAMCH
  215. * ..
  216. * .. External Functions ..
  217. EXTERNAL ILATRANS
  218. INTEGER ILATRANS
  219. * ..
  220. * .. Intrinsic Functions ..
  221. INTRINSIC MAX, ABS, REAL, DIMAG, SIGN
  222. * ..
  223. * .. Statement Functions
  224. DOUBLE PRECISION CABS1
  225. * ..
  226. * .. Statement Function Definitions ..
  227. CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  228. * ..
  229. * .. Executable Statements ..
  230. *
  231. * Test the input parameters.
  232. *
  233. INFO = 0
  234. IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  235. $ .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  236. $ .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  237. INFO = 1
  238. ELSE IF( M.LT.0 )THEN
  239. INFO = 2
  240. ELSE IF( N.LT.0 )THEN
  241. INFO = 3
  242. ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
  243. INFO = 4
  244. ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  245. INFO = 5
  246. ELSE IF( LDAB.LT.KL+KU+1 )THEN
  247. INFO = 6
  248. ELSE IF( INCX.EQ.0 )THEN
  249. INFO = 8
  250. ELSE IF( INCY.EQ.0 )THEN
  251. INFO = 11
  252. END IF
  253. IF( INFO.NE.0 )THEN
  254. CALL XERBLA( 'ZLA_GBAMV ', INFO )
  255. RETURN
  256. END IF
  257. *
  258. * Quick return if possible.
  259. *
  260. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  261. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  262. $ RETURN
  263. *
  264. * Set LENX and LENY, the lengths of the vectors x and y, and set
  265. * up the start points in X and Y.
  266. *
  267. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  268. LENX = N
  269. LENY = M
  270. ELSE
  271. LENX = M
  272. LENY = N
  273. END IF
  274. IF( INCX.GT.0 )THEN
  275. KX = 1
  276. ELSE
  277. KX = 1 - ( LENX - 1 )*INCX
  278. END IF
  279. IF( INCY.GT.0 )THEN
  280. KY = 1
  281. ELSE
  282. KY = 1 - ( LENY - 1 )*INCY
  283. END IF
  284. *
  285. * Set SAFE1 essentially to be the underflow threshold times the
  286. * number of additions in each row.
  287. *
  288. SAFE1 = DLAMCH( 'Safe minimum' )
  289. SAFE1 = (N+1)*SAFE1
  290. *
  291. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  292. *
  293. * The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  294. * the inexact flag. Still doesn't help change the iteration order
  295. * to per-column.
  296. *
  297. KD = KU + 1
  298. KE = KL + 1
  299. IY = KY
  300. IF ( INCX.EQ.1 ) THEN
  301. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  302. DO I = 1, LENY
  303. IF ( BETA .EQ. 0.0D+0 ) THEN
  304. SYMB_ZERO = .TRUE.
  305. Y( IY ) = 0.0D+0
  306. ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  307. SYMB_ZERO = .TRUE.
  308. ELSE
  309. SYMB_ZERO = .FALSE.
  310. Y( IY ) = BETA * ABS( Y( IY ) )
  311. END IF
  312. IF ( ALPHA .NE. 0.0D+0 ) THEN
  313. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  314. TEMP = CABS1( AB( KD+I-J, J ) )
  315. SYMB_ZERO = SYMB_ZERO .AND.
  316. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  317. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  318. END DO
  319. END IF
  320. IF ( .NOT.SYMB_ZERO)
  321. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  322. IY = IY + INCY
  323. END DO
  324. ELSE
  325. DO I = 1, LENY
  326. IF ( BETA .EQ. 0.0D+0 ) THEN
  327. SYMB_ZERO = .TRUE.
  328. Y( IY ) = 0.0D+0
  329. ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  330. SYMB_ZERO = .TRUE.
  331. ELSE
  332. SYMB_ZERO = .FALSE.
  333. Y( IY ) = BETA * ABS( Y( IY ) )
  334. END IF
  335. IF ( ALPHA .NE. 0.0D+0 ) THEN
  336. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  337. TEMP = CABS1( AB( KE-I+J, I ) )
  338. SYMB_ZERO = SYMB_ZERO .AND.
  339. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  340. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  341. END DO
  342. END IF
  343. IF ( .NOT.SYMB_ZERO)
  344. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  345. IY = IY + INCY
  346. END DO
  347. END IF
  348. ELSE
  349. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  350. DO I = 1, LENY
  351. IF ( BETA .EQ. 0.0D+0 ) THEN
  352. SYMB_ZERO = .TRUE.
  353. Y( IY ) = 0.0D+0
  354. ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  355. SYMB_ZERO = .TRUE.
  356. ELSE
  357. SYMB_ZERO = .FALSE.
  358. Y( IY ) = BETA * ABS( Y( IY ) )
  359. END IF
  360. IF ( ALPHA .NE. 0.0D+0 ) THEN
  361. JX = KX
  362. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  363. TEMP = CABS1( AB( KD+I-J, J ) )
  364. SYMB_ZERO = SYMB_ZERO .AND.
  365. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  366. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  367. JX = JX + INCX
  368. END DO
  369. END IF
  370. IF ( .NOT.SYMB_ZERO )
  371. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  372. IY = IY + INCY
  373. END DO
  374. ELSE
  375. DO I = 1, LENY
  376. IF ( BETA .EQ. 0.0D+0 ) THEN
  377. SYMB_ZERO = .TRUE.
  378. Y( IY ) = 0.0D+0
  379. ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  380. SYMB_ZERO = .TRUE.
  381. ELSE
  382. SYMB_ZERO = .FALSE.
  383. Y( IY ) = BETA * ABS( Y( IY ) )
  384. END IF
  385. IF ( ALPHA .NE. 0.0D+0 ) THEN
  386. JX = KX
  387. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  388. TEMP = CABS1( AB( KE-I+J, I ) )
  389. SYMB_ZERO = SYMB_ZERO .AND.
  390. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  391. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  392. JX = JX + INCX
  393. END DO
  394. END IF
  395. IF ( .NOT.SYMB_ZERO )
  396. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  397. IY = IY + INCY
  398. END DO
  399. END IF
  400. END IF
  401. *
  402. RETURN
  403. *
  404. * End of ZLA_GBAMV
  405. *
  406. END