You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhptrf.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. *> \brief \b ZHPTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHPTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZHPTRF computes the factorization of a complex Hermitian packed
  39. *> matrix A using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**H or A = L*D*L**H
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, and D is Hermitian and block diagonal with
  45. *> 1-by-1 and 2-by-2 diagonal blocks.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] AP
  65. *> \verbatim
  66. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  67. *> On entry, the upper or lower triangle of the Hermitian matrix
  68. *> A, packed columnwise in a linear array. The j-th column of A
  69. *> is stored in the array AP as follows:
  70. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  71. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  72. *>
  73. *> On exit, the block diagonal matrix D and the multipliers used
  74. *> to obtain the factor U or L, stored as a packed triangular
  75. *> matrix overwriting A (see below for further details).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] IPIV
  79. *> \verbatim
  80. *> IPIV is INTEGER array, dimension (N)
  81. *> Details of the interchanges and the block structure of D.
  82. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  83. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  84. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  85. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  86. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  87. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  88. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] INFO
  92. *> \verbatim
  93. *> INFO is INTEGER
  94. *> = 0: successful exit
  95. *> < 0: if INFO = -i, the i-th argument had an illegal value
  96. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  97. *> has been completed, but the block diagonal matrix D is
  98. *> exactly singular, and division by zero will occur if it
  99. *> is used to solve a system of equations.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \ingroup complex16OTHERcomputational
  111. *
  112. *> \par Further Details:
  113. * =====================
  114. *>
  115. *> \verbatim
  116. *>
  117. *> If UPLO = 'U', then A = U*D*U**H, where
  118. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  119. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  120. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  121. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  122. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  123. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  124. *>
  125. *> ( I v 0 ) k-s
  126. *> U(k) = ( 0 I 0 ) s
  127. *> ( 0 0 I ) n-k
  128. *> k-s s n-k
  129. *>
  130. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  131. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  132. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  133. *>
  134. *> If UPLO = 'L', then A = L*D*L**H, where
  135. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  136. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  137. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  138. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  139. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  140. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  141. *>
  142. *> ( I 0 0 ) k-1
  143. *> L(k) = ( 0 I 0 ) s
  144. *> ( 0 v I ) n-k-s+1
  145. *> k-1 s n-k-s+1
  146. *>
  147. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  148. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  149. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  150. *> \endverbatim
  151. *
  152. *> \par Contributors:
  153. * ==================
  154. *>
  155. *> J. Lewis, Boeing Computer Services Company
  156. *
  157. * =====================================================================
  158. SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
  159. *
  160. * -- LAPACK computational routine --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. *
  164. * .. Scalar Arguments ..
  165. CHARACTER UPLO
  166. INTEGER INFO, N
  167. * ..
  168. * .. Array Arguments ..
  169. INTEGER IPIV( * )
  170. COMPLEX*16 AP( * )
  171. * ..
  172. *
  173. * =====================================================================
  174. *
  175. * .. Parameters ..
  176. DOUBLE PRECISION ZERO, ONE
  177. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  178. DOUBLE PRECISION EIGHT, SEVTEN
  179. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  180. * ..
  181. * .. Local Scalars ..
  182. LOGICAL UPPER
  183. INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  184. $ KSTEP, KX, NPP
  185. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  186. $ TT
  187. COMPLEX*16 D12, D21, T, WK, WKM1, WKP1, ZDUM
  188. * ..
  189. * .. External Functions ..
  190. LOGICAL LSAME
  191. INTEGER IZAMAX
  192. DOUBLE PRECISION DLAPY2
  193. EXTERNAL LSAME, IZAMAX, DLAPY2
  194. * ..
  195. * .. External Subroutines ..
  196. EXTERNAL XERBLA, ZDSCAL, ZHPR, ZSWAP
  197. * ..
  198. * .. Intrinsic Functions ..
  199. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  200. * ..
  201. * .. Statement Functions ..
  202. DOUBLE PRECISION CABS1
  203. * ..
  204. * .. Statement Function definitions ..
  205. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. * Test the input parameters.
  210. *
  211. INFO = 0
  212. UPPER = LSAME( UPLO, 'U' )
  213. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  214. INFO = -1
  215. ELSE IF( N.LT.0 ) THEN
  216. INFO = -2
  217. END IF
  218. IF( INFO.NE.0 ) THEN
  219. CALL XERBLA( 'ZHPTRF', -INFO )
  220. RETURN
  221. END IF
  222. *
  223. * Initialize ALPHA for use in choosing pivot block size.
  224. *
  225. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  226. *
  227. IF( UPPER ) THEN
  228. *
  229. * Factorize A as U*D*U**H using the upper triangle of A
  230. *
  231. * K is the main loop index, decreasing from N to 1 in steps of
  232. * 1 or 2
  233. *
  234. K = N
  235. KC = ( N-1 )*N / 2 + 1
  236. 10 CONTINUE
  237. KNC = KC
  238. *
  239. * If K < 1, exit from loop
  240. *
  241. IF( K.LT.1 )
  242. $ GO TO 110
  243. KSTEP = 1
  244. *
  245. * Determine rows and columns to be interchanged and whether
  246. * a 1-by-1 or 2-by-2 pivot block will be used
  247. *
  248. ABSAKK = ABS( DBLE( AP( KC+K-1 ) ) )
  249. *
  250. * IMAX is the row-index of the largest off-diagonal element in
  251. * column K, and COLMAX is its absolute value
  252. *
  253. IF( K.GT.1 ) THEN
  254. IMAX = IZAMAX( K-1, AP( KC ), 1 )
  255. COLMAX = CABS1( AP( KC+IMAX-1 ) )
  256. ELSE
  257. COLMAX = ZERO
  258. END IF
  259. *
  260. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  261. *
  262. * Column K is zero: set INFO and continue
  263. *
  264. IF( INFO.EQ.0 )
  265. $ INFO = K
  266. KP = K
  267. AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  268. ELSE
  269. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  270. *
  271. * no interchange, use 1-by-1 pivot block
  272. *
  273. KP = K
  274. ELSE
  275. *
  276. * JMAX is the column-index of the largest off-diagonal
  277. * element in row IMAX, and ROWMAX is its absolute value
  278. *
  279. ROWMAX = ZERO
  280. JMAX = IMAX
  281. KX = IMAX*( IMAX+1 ) / 2 + IMAX
  282. DO 20 J = IMAX + 1, K
  283. IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  284. ROWMAX = CABS1( AP( KX ) )
  285. JMAX = J
  286. END IF
  287. KX = KX + J
  288. 20 CONTINUE
  289. KPC = ( IMAX-1 )*IMAX / 2 + 1
  290. IF( IMAX.GT.1 ) THEN
  291. JMAX = IZAMAX( IMAX-1, AP( KPC ), 1 )
  292. ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
  293. END IF
  294. *
  295. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  296. *
  297. * no interchange, use 1-by-1 pivot block
  298. *
  299. KP = K
  300. ELSE IF( ABS( DBLE( AP( KPC+IMAX-1 ) ) ).GE.ALPHA*
  301. $ ROWMAX ) THEN
  302. *
  303. * interchange rows and columns K and IMAX, use 1-by-1
  304. * pivot block
  305. *
  306. KP = IMAX
  307. ELSE
  308. *
  309. * interchange rows and columns K-1 and IMAX, use 2-by-2
  310. * pivot block
  311. *
  312. KP = IMAX
  313. KSTEP = 2
  314. END IF
  315. END IF
  316. *
  317. KK = K - KSTEP + 1
  318. IF( KSTEP.EQ.2 )
  319. $ KNC = KNC - K + 1
  320. IF( KP.NE.KK ) THEN
  321. *
  322. * Interchange rows and columns KK and KP in the leading
  323. * submatrix A(1:k,1:k)
  324. *
  325. CALL ZSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  326. KX = KPC + KP - 1
  327. DO 30 J = KP + 1, KK - 1
  328. KX = KX + J - 1
  329. T = DCONJG( AP( KNC+J-1 ) )
  330. AP( KNC+J-1 ) = DCONJG( AP( KX ) )
  331. AP( KX ) = T
  332. 30 CONTINUE
  333. AP( KX+KK-1 ) = DCONJG( AP( KX+KK-1 ) )
  334. R1 = DBLE( AP( KNC+KK-1 ) )
  335. AP( KNC+KK-1 ) = DBLE( AP( KPC+KP-1 ) )
  336. AP( KPC+KP-1 ) = R1
  337. IF( KSTEP.EQ.2 ) THEN
  338. AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  339. T = AP( KC+K-2 )
  340. AP( KC+K-2 ) = AP( KC+KP-1 )
  341. AP( KC+KP-1 ) = T
  342. END IF
  343. ELSE
  344. AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  345. IF( KSTEP.EQ.2 )
  346. $ AP( KC-1 ) = DBLE( AP( KC-1 ) )
  347. END IF
  348. *
  349. * Update the leading submatrix
  350. *
  351. IF( KSTEP.EQ.1 ) THEN
  352. *
  353. * 1-by-1 pivot block D(k): column k now holds
  354. *
  355. * W(k) = U(k)*D(k)
  356. *
  357. * where U(k) is the k-th column of U
  358. *
  359. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  360. *
  361. * A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
  362. *
  363. R1 = ONE / DBLE( AP( KC+K-1 ) )
  364. CALL ZHPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  365. *
  366. * Store U(k) in column k
  367. *
  368. CALL ZDSCAL( K-1, R1, AP( KC ), 1 )
  369. ELSE
  370. *
  371. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  372. *
  373. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  374. *
  375. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  376. * of U
  377. *
  378. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  379. *
  380. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
  381. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
  382. *
  383. IF( K.GT.2 ) THEN
  384. *
  385. D = DLAPY2( DBLE( AP( K-1+( K-1 )*K / 2 ) ),
  386. $ DIMAG( AP( K-1+( K-1 )*K / 2 ) ) )
  387. D22 = DBLE( AP( K-1+( K-2 )*( K-1 ) / 2 ) ) / D
  388. D11 = DBLE( AP( K+( K-1 )*K / 2 ) ) / D
  389. TT = ONE / ( D11*D22-ONE )
  390. D12 = AP( K-1+( K-1 )*K / 2 ) / D
  391. D = TT / D
  392. *
  393. DO 50 J = K - 2, 1, -1
  394. WKM1 = D*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  395. $ DCONJG( D12 )*AP( J+( K-1 )*K / 2 ) )
  396. WK = D*( D22*AP( J+( K-1 )*K / 2 )-D12*
  397. $ AP( J+( K-2 )*( K-1 ) / 2 ) )
  398. DO 40 I = J, 1, -1
  399. AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  400. $ AP( I+( K-1 )*K / 2 )*DCONJG( WK ) -
  401. $ AP( I+( K-2 )*( K-1 ) / 2 )*DCONJG( WKM1 )
  402. 40 CONTINUE
  403. AP( J+( K-1 )*K / 2 ) = WK
  404. AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  405. AP( J+( J-1 )*J / 2 ) = DCMPLX( DBLE( AP( J+( J-
  406. $ 1 )*J / 2 ) ), 0.0D+0 )
  407. 50 CONTINUE
  408. *
  409. END IF
  410. *
  411. END IF
  412. END IF
  413. *
  414. * Store details of the interchanges in IPIV
  415. *
  416. IF( KSTEP.EQ.1 ) THEN
  417. IPIV( K ) = KP
  418. ELSE
  419. IPIV( K ) = -KP
  420. IPIV( K-1 ) = -KP
  421. END IF
  422. *
  423. * Decrease K and return to the start of the main loop
  424. *
  425. K = K - KSTEP
  426. KC = KNC - K
  427. GO TO 10
  428. *
  429. ELSE
  430. *
  431. * Factorize A as L*D*L**H using the lower triangle of A
  432. *
  433. * K is the main loop index, increasing from 1 to N in steps of
  434. * 1 or 2
  435. *
  436. K = 1
  437. KC = 1
  438. NPP = N*( N+1 ) / 2
  439. 60 CONTINUE
  440. KNC = KC
  441. *
  442. * If K > N, exit from loop
  443. *
  444. IF( K.GT.N )
  445. $ GO TO 110
  446. KSTEP = 1
  447. *
  448. * Determine rows and columns to be interchanged and whether
  449. * a 1-by-1 or 2-by-2 pivot block will be used
  450. *
  451. ABSAKK = ABS( DBLE( AP( KC ) ) )
  452. *
  453. * IMAX is the row-index of the largest off-diagonal element in
  454. * column K, and COLMAX is its absolute value
  455. *
  456. IF( K.LT.N ) THEN
  457. IMAX = K + IZAMAX( N-K, AP( KC+1 ), 1 )
  458. COLMAX = CABS1( AP( KC+IMAX-K ) )
  459. ELSE
  460. COLMAX = ZERO
  461. END IF
  462. *
  463. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  464. *
  465. * Column K is zero: set INFO and continue
  466. *
  467. IF( INFO.EQ.0 )
  468. $ INFO = K
  469. KP = K
  470. AP( KC ) = DBLE( AP( KC ) )
  471. ELSE
  472. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  473. *
  474. * no interchange, use 1-by-1 pivot block
  475. *
  476. KP = K
  477. ELSE
  478. *
  479. * JMAX is the column-index of the largest off-diagonal
  480. * element in row IMAX, and ROWMAX is its absolute value
  481. *
  482. ROWMAX = ZERO
  483. KX = KC + IMAX - K
  484. DO 70 J = K, IMAX - 1
  485. IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  486. ROWMAX = CABS1( AP( KX ) )
  487. JMAX = J
  488. END IF
  489. KX = KX + N - J
  490. 70 CONTINUE
  491. KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  492. IF( IMAX.LT.N ) THEN
  493. JMAX = IMAX + IZAMAX( N-IMAX, AP( KPC+1 ), 1 )
  494. ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
  495. END IF
  496. *
  497. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  498. *
  499. * no interchange, use 1-by-1 pivot block
  500. *
  501. KP = K
  502. ELSE IF( ABS( DBLE( AP( KPC ) ) ).GE.ALPHA*ROWMAX ) THEN
  503. *
  504. * interchange rows and columns K and IMAX, use 1-by-1
  505. * pivot block
  506. *
  507. KP = IMAX
  508. ELSE
  509. *
  510. * interchange rows and columns K+1 and IMAX, use 2-by-2
  511. * pivot block
  512. *
  513. KP = IMAX
  514. KSTEP = 2
  515. END IF
  516. END IF
  517. *
  518. KK = K + KSTEP - 1
  519. IF( KSTEP.EQ.2 )
  520. $ KNC = KNC + N - K + 1
  521. IF( KP.NE.KK ) THEN
  522. *
  523. * Interchange rows and columns KK and KP in the trailing
  524. * submatrix A(k:n,k:n)
  525. *
  526. IF( KP.LT.N )
  527. $ CALL ZSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  528. $ 1 )
  529. KX = KNC + KP - KK
  530. DO 80 J = KK + 1, KP - 1
  531. KX = KX + N - J + 1
  532. T = DCONJG( AP( KNC+J-KK ) )
  533. AP( KNC+J-KK ) = DCONJG( AP( KX ) )
  534. AP( KX ) = T
  535. 80 CONTINUE
  536. AP( KNC+KP-KK ) = DCONJG( AP( KNC+KP-KK ) )
  537. R1 = DBLE( AP( KNC ) )
  538. AP( KNC ) = DBLE( AP( KPC ) )
  539. AP( KPC ) = R1
  540. IF( KSTEP.EQ.2 ) THEN
  541. AP( KC ) = DBLE( AP( KC ) )
  542. T = AP( KC+1 )
  543. AP( KC+1 ) = AP( KC+KP-K )
  544. AP( KC+KP-K ) = T
  545. END IF
  546. ELSE
  547. AP( KC ) = DBLE( AP( KC ) )
  548. IF( KSTEP.EQ.2 )
  549. $ AP( KNC ) = DBLE( AP( KNC ) )
  550. END IF
  551. *
  552. * Update the trailing submatrix
  553. *
  554. IF( KSTEP.EQ.1 ) THEN
  555. *
  556. * 1-by-1 pivot block D(k): column k now holds
  557. *
  558. * W(k) = L(k)*D(k)
  559. *
  560. * where L(k) is the k-th column of L
  561. *
  562. IF( K.LT.N ) THEN
  563. *
  564. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  565. *
  566. * A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
  567. *
  568. R1 = ONE / DBLE( AP( KC ) )
  569. CALL ZHPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  570. $ AP( KC+N-K+1 ) )
  571. *
  572. * Store L(k) in column K
  573. *
  574. CALL ZDSCAL( N-K, R1, AP( KC+1 ), 1 )
  575. END IF
  576. ELSE
  577. *
  578. * 2-by-2 pivot block D(k): columns K and K+1 now hold
  579. *
  580. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  581. *
  582. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  583. * of L
  584. *
  585. IF( K.LT.N-1 ) THEN
  586. *
  587. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  588. *
  589. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
  590. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
  591. *
  592. * where L(k) and L(k+1) are the k-th and (k+1)-th
  593. * columns of L
  594. *
  595. D = DLAPY2( DBLE( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ),
  596. $ DIMAG( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ) )
  597. D11 = DBLE( AP( K+1+K*( 2*N-K-1 ) / 2 ) ) / D
  598. D22 = DBLE( AP( K+( K-1 )*( 2*N-K ) / 2 ) ) / D
  599. TT = ONE / ( D11*D22-ONE )
  600. D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 ) / D
  601. D = TT / D
  602. *
  603. DO 100 J = K + 2, N
  604. WK = D*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-D21*
  605. $ AP( J+K*( 2*N-K-1 ) / 2 ) )
  606. WKP1 = D*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  607. $ DCONJG( D21 )*AP( J+( K-1 )*( 2*N-K ) /
  608. $ 2 ) )
  609. DO 90 I = J, N
  610. AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  611. $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  612. $ 2 )*DCONJG( WK ) - AP( I+K*( 2*N-K-1 ) / 2 )*
  613. $ DCONJG( WKP1 )
  614. 90 CONTINUE
  615. AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  616. AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  617. AP( J+( J-1 )*( 2*N-J ) / 2 )
  618. $ = DCMPLX( DBLE( AP( J+( J-1 )*( 2*N-J ) / 2 ) ),
  619. $ 0.0D+0 )
  620. 100 CONTINUE
  621. END IF
  622. END IF
  623. END IF
  624. *
  625. * Store details of the interchanges in IPIV
  626. *
  627. IF( KSTEP.EQ.1 ) THEN
  628. IPIV( K ) = KP
  629. ELSE
  630. IPIV( K ) = -KP
  631. IPIV( K+1 ) = -KP
  632. END IF
  633. *
  634. * Increase K and return to the start of the main loop
  635. *
  636. K = K + KSTEP
  637. KC = KNC + N - K + 2
  638. GO TO 60
  639. *
  640. END IF
  641. *
  642. 110 CONTINUE
  643. RETURN
  644. *
  645. * End of ZHPTRF
  646. *
  647. END