You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetf2.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658
  1. *> \brief \b ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm, calling Level 2 BLAS).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHETF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZHETF2 computes the factorization of a complex Hermitian matrix A
  39. *> using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**H or A = L*D*L**H
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, U**H is the conjugate transpose of U, and D is
  45. *> Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the upper or lower triangular part of the
  57. *> Hermitian matrix A is stored:
  58. *> = 'U': Upper triangular
  59. *> = 'L': Lower triangular
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is COMPLEX*16 array, dimension (LDA,N)
  71. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  72. *> n-by-n upper triangular part of A contains the upper
  73. *> triangular part of the matrix A, and the strictly lower
  74. *> triangular part of A is not referenced. If UPLO = 'L', the
  75. *> leading n-by-n lower triangular part of A contains the lower
  76. *> triangular part of the matrix A, and the strictly upper
  77. *> triangular part of A is not referenced.
  78. *>
  79. *> On exit, the block diagonal matrix D and the multipliers used
  80. *> to obtain the factor U or L (see below for further details).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] IPIV
  90. *> \verbatim
  91. *> IPIV is INTEGER array, dimension (N)
  92. *> Details of the interchanges and the block structure of D.
  93. *>
  94. *> If UPLO = 'U':
  95. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  96. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  97. *>
  98. *> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  99. *> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  100. *> is a 2-by-2 diagonal block.
  101. *>
  102. *> If UPLO = 'L':
  103. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  104. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  105. *>
  106. *> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  107. *> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  108. *> is a 2-by-2 diagonal block.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] INFO
  112. *> \verbatim
  113. *> INFO is INTEGER
  114. *> = 0: successful exit
  115. *> < 0: if INFO = -k, the k-th argument had an illegal value
  116. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  117. *> has been completed, but the block diagonal matrix D is
  118. *> exactly singular, and division by zero will occur if it
  119. *> is used to solve a system of equations.
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \ingroup complex16HEcomputational
  131. *
  132. *> \par Further Details:
  133. * =====================
  134. *>
  135. *> \verbatim
  136. *>
  137. *> If UPLO = 'U', then A = U*D*U**H, where
  138. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  139. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  140. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  141. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  142. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  143. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  144. *>
  145. *> ( I v 0 ) k-s
  146. *> U(k) = ( 0 I 0 ) s
  147. *> ( 0 0 I ) n-k
  148. *> k-s s n-k
  149. *>
  150. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  151. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  152. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  153. *>
  154. *> If UPLO = 'L', then A = L*D*L**H, where
  155. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  156. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  157. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  158. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  159. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  160. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  161. *>
  162. *> ( I 0 0 ) k-1
  163. *> L(k) = ( 0 I 0 ) s
  164. *> ( 0 v I ) n-k-s+1
  165. *> k-1 s n-k-s+1
  166. *>
  167. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  168. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  169. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  170. *> \endverbatim
  171. *
  172. *> \par Contributors:
  173. * ==================
  174. *>
  175. *> \verbatim
  176. *> 09-29-06 - patch from
  177. *> Bobby Cheng, MathWorks
  178. *>
  179. *> Replace l.210 and l.393
  180. *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  181. *> by
  182. *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  183. *>
  184. *> 01-01-96 - Based on modifications by
  185. *> J. Lewis, Boeing Computer Services Company
  186. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  187. *> \endverbatim
  188. *
  189. * =====================================================================
  190. SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
  191. *
  192. * -- LAPACK computational routine --
  193. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  194. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195. *
  196. * .. Scalar Arguments ..
  197. CHARACTER UPLO
  198. INTEGER INFO, LDA, N
  199. * ..
  200. * .. Array Arguments ..
  201. INTEGER IPIV( * )
  202. COMPLEX*16 A( LDA, * )
  203. * ..
  204. *
  205. * =====================================================================
  206. *
  207. * .. Parameters ..
  208. DOUBLE PRECISION ZERO, ONE
  209. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  210. DOUBLE PRECISION EIGHT, SEVTEN
  211. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  212. * ..
  213. * .. Local Scalars ..
  214. LOGICAL UPPER
  215. INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
  216. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  217. $ TT
  218. COMPLEX*16 D12, D21, T, WK, WKM1, WKP1, ZDUM
  219. * ..
  220. * .. External Functions ..
  221. LOGICAL LSAME, DISNAN
  222. INTEGER IZAMAX
  223. DOUBLE PRECISION DLAPY2
  224. EXTERNAL LSAME, IZAMAX, DLAPY2, DISNAN
  225. * ..
  226. * .. External Subroutines ..
  227. EXTERNAL XERBLA, ZDSCAL, ZHER, ZSWAP
  228. * ..
  229. * .. Intrinsic Functions ..
  230. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  231. * ..
  232. * .. Statement Functions ..
  233. DOUBLE PRECISION CABS1
  234. * ..
  235. * .. Statement Function definitions ..
  236. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  237. * ..
  238. * .. Executable Statements ..
  239. *
  240. * Test the input parameters.
  241. *
  242. INFO = 0
  243. UPPER = LSAME( UPLO, 'U' )
  244. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  245. INFO = -1
  246. ELSE IF( N.LT.0 ) THEN
  247. INFO = -2
  248. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  249. INFO = -4
  250. END IF
  251. IF( INFO.NE.0 ) THEN
  252. CALL XERBLA( 'ZHETF2', -INFO )
  253. RETURN
  254. END IF
  255. *
  256. * Initialize ALPHA for use in choosing pivot block size.
  257. *
  258. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  259. *
  260. IF( UPPER ) THEN
  261. *
  262. * Factorize A as U*D*U**H using the upper triangle of A
  263. *
  264. * K is the main loop index, decreasing from N to 1 in steps of
  265. * 1 or 2
  266. *
  267. K = N
  268. 10 CONTINUE
  269. *
  270. * If K < 1, exit from loop
  271. *
  272. IF( K.LT.1 )
  273. $ GO TO 90
  274. KSTEP = 1
  275. *
  276. * Determine rows and columns to be interchanged and whether
  277. * a 1-by-1 or 2-by-2 pivot block will be used
  278. *
  279. ABSAKK = ABS( DBLE( A( K, K ) ) )
  280. *
  281. * IMAX is the row-index of the largest off-diagonal element in
  282. * column K, and COLMAX is its absolute value.
  283. * Determine both COLMAX and IMAX.
  284. *
  285. IF( K.GT.1 ) THEN
  286. IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  287. COLMAX = CABS1( A( IMAX, K ) )
  288. ELSE
  289. COLMAX = ZERO
  290. END IF
  291. *
  292. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  293. *
  294. * Column K is zero or underflow, or contains a NaN:
  295. * set INFO and continue
  296. *
  297. IF( INFO.EQ.0 )
  298. $ INFO = K
  299. KP = K
  300. A( K, K ) = DBLE( A( K, K ) )
  301. ELSE
  302. *
  303. * ============================================================
  304. *
  305. * Test for interchange
  306. *
  307. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  308. *
  309. * no interchange, use 1-by-1 pivot block
  310. *
  311. KP = K
  312. ELSE
  313. *
  314. * JMAX is the column-index of the largest off-diagonal
  315. * element in row IMAX, and ROWMAX is its absolute value.
  316. * Determine only ROWMAX.
  317. *
  318. JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  319. ROWMAX = CABS1( A( IMAX, JMAX ) )
  320. IF( IMAX.GT.1 ) THEN
  321. JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  322. ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  323. END IF
  324. *
  325. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  326. *
  327. * no interchange, use 1-by-1 pivot block
  328. *
  329. KP = K
  330. *
  331. ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  332. $ THEN
  333. *
  334. * interchange rows and columns K and IMAX, use 1-by-1
  335. * pivot block
  336. *
  337. KP = IMAX
  338. ELSE
  339. *
  340. * interchange rows and columns K-1 and IMAX, use 2-by-2
  341. * pivot block
  342. *
  343. KP = IMAX
  344. KSTEP = 2
  345. END IF
  346. *
  347. END IF
  348. *
  349. * ============================================================
  350. *
  351. KK = K - KSTEP + 1
  352. IF( KP.NE.KK ) THEN
  353. *
  354. * Interchange rows and columns KK and KP in the leading
  355. * submatrix A(1:k,1:k)
  356. *
  357. CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  358. DO 20 J = KP + 1, KK - 1
  359. T = DCONJG( A( J, KK ) )
  360. A( J, KK ) = DCONJG( A( KP, J ) )
  361. A( KP, J ) = T
  362. 20 CONTINUE
  363. A( KP, KK ) = DCONJG( A( KP, KK ) )
  364. R1 = DBLE( A( KK, KK ) )
  365. A( KK, KK ) = DBLE( A( KP, KP ) )
  366. A( KP, KP ) = R1
  367. IF( KSTEP.EQ.2 ) THEN
  368. A( K, K ) = DBLE( A( K, K ) )
  369. T = A( K-1, K )
  370. A( K-1, K ) = A( KP, K )
  371. A( KP, K ) = T
  372. END IF
  373. ELSE
  374. A( K, K ) = DBLE( A( K, K ) )
  375. IF( KSTEP.EQ.2 )
  376. $ A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
  377. END IF
  378. *
  379. * Update the leading submatrix
  380. *
  381. IF( KSTEP.EQ.1 ) THEN
  382. *
  383. * 1-by-1 pivot block D(k): column k now holds
  384. *
  385. * W(k) = U(k)*D(k)
  386. *
  387. * where U(k) is the k-th column of U
  388. *
  389. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  390. *
  391. * A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
  392. *
  393. R1 = ONE / DBLE( A( K, K ) )
  394. CALL ZHER( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  395. *
  396. * Store U(k) in column k
  397. *
  398. CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  399. ELSE
  400. *
  401. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  402. *
  403. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  404. *
  405. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  406. * of U
  407. *
  408. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  409. *
  410. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
  411. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
  412. *
  413. IF( K.GT.2 ) THEN
  414. *
  415. D = DLAPY2( DBLE( A( K-1, K ) ),
  416. $ DIMAG( A( K-1, K ) ) )
  417. D22 = DBLE( A( K-1, K-1 ) ) / D
  418. D11 = DBLE( A( K, K ) ) / D
  419. TT = ONE / ( D11*D22-ONE )
  420. D12 = A( K-1, K ) / D
  421. D = TT / D
  422. *
  423. DO 40 J = K - 2, 1, -1
  424. WKM1 = D*( D11*A( J, K-1 )-DCONJG( D12 )*
  425. $ A( J, K ) )
  426. WK = D*( D22*A( J, K )-D12*A( J, K-1 ) )
  427. DO 30 I = J, 1, -1
  428. A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  429. $ A( I, K-1 )*DCONJG( WKM1 )
  430. 30 CONTINUE
  431. A( J, K ) = WK
  432. A( J, K-1 ) = WKM1
  433. A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  434. 40 CONTINUE
  435. *
  436. END IF
  437. *
  438. END IF
  439. END IF
  440. *
  441. * Store details of the interchanges in IPIV
  442. *
  443. IF( KSTEP.EQ.1 ) THEN
  444. IPIV( K ) = KP
  445. ELSE
  446. IPIV( K ) = -KP
  447. IPIV( K-1 ) = -KP
  448. END IF
  449. *
  450. * Decrease K and return to the start of the main loop
  451. *
  452. K = K - KSTEP
  453. GO TO 10
  454. *
  455. ELSE
  456. *
  457. * Factorize A as L*D*L**H using the lower triangle of A
  458. *
  459. * K is the main loop index, increasing from 1 to N in steps of
  460. * 1 or 2
  461. *
  462. K = 1
  463. 50 CONTINUE
  464. *
  465. * If K > N, exit from loop
  466. *
  467. IF( K.GT.N )
  468. $ GO TO 90
  469. KSTEP = 1
  470. *
  471. * Determine rows and columns to be interchanged and whether
  472. * a 1-by-1 or 2-by-2 pivot block will be used
  473. *
  474. ABSAKK = ABS( DBLE( A( K, K ) ) )
  475. *
  476. * IMAX is the row-index of the largest off-diagonal element in
  477. * column K, and COLMAX is its absolute value.
  478. * Determine both COLMAX and IMAX.
  479. *
  480. IF( K.LT.N ) THEN
  481. IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  482. COLMAX = CABS1( A( IMAX, K ) )
  483. ELSE
  484. COLMAX = ZERO
  485. END IF
  486. *
  487. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  488. *
  489. * Column K is zero or underflow, or contains a NaN:
  490. * set INFO and continue
  491. *
  492. IF( INFO.EQ.0 )
  493. $ INFO = K
  494. KP = K
  495. A( K, K ) = DBLE( A( K, K ) )
  496. ELSE
  497. *
  498. * ============================================================
  499. *
  500. * Test for interchange
  501. *
  502. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  503. *
  504. * no interchange, use 1-by-1 pivot block
  505. *
  506. KP = K
  507. ELSE
  508. *
  509. * JMAX is the column-index of the largest off-diagonal
  510. * element in row IMAX, and ROWMAX is its absolute value.
  511. * Determine only ROWMAX.
  512. *
  513. JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  514. ROWMAX = CABS1( A( IMAX, JMAX ) )
  515. IF( IMAX.LT.N ) THEN
  516. JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  517. ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  518. END IF
  519. *
  520. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  521. *
  522. * no interchange, use 1-by-1 pivot block
  523. *
  524. KP = K
  525. *
  526. ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
  527. $ THEN
  528. *
  529. * interchange rows and columns K and IMAX, use 1-by-1
  530. * pivot block
  531. *
  532. KP = IMAX
  533. ELSE
  534. *
  535. * interchange rows and columns K+1 and IMAX, use 2-by-2
  536. * pivot block
  537. *
  538. KP = IMAX
  539. KSTEP = 2
  540. END IF
  541. *
  542. END IF
  543. *
  544. * ============================================================
  545. *
  546. KK = K + KSTEP - 1
  547. IF( KP.NE.KK ) THEN
  548. *
  549. * Interchange rows and columns KK and KP in the trailing
  550. * submatrix A(k:n,k:n)
  551. *
  552. IF( KP.LT.N )
  553. $ CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  554. DO 60 J = KK + 1, KP - 1
  555. T = DCONJG( A( J, KK ) )
  556. A( J, KK ) = DCONJG( A( KP, J ) )
  557. A( KP, J ) = T
  558. 60 CONTINUE
  559. A( KP, KK ) = DCONJG( A( KP, KK ) )
  560. R1 = DBLE( A( KK, KK ) )
  561. A( KK, KK ) = DBLE( A( KP, KP ) )
  562. A( KP, KP ) = R1
  563. IF( KSTEP.EQ.2 ) THEN
  564. A( K, K ) = DBLE( A( K, K ) )
  565. T = A( K+1, K )
  566. A( K+1, K ) = A( KP, K )
  567. A( KP, K ) = T
  568. END IF
  569. ELSE
  570. A( K, K ) = DBLE( A( K, K ) )
  571. IF( KSTEP.EQ.2 )
  572. $ A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
  573. END IF
  574. *
  575. * Update the trailing submatrix
  576. *
  577. IF( KSTEP.EQ.1 ) THEN
  578. *
  579. * 1-by-1 pivot block D(k): column k now holds
  580. *
  581. * W(k) = L(k)*D(k)
  582. *
  583. * where L(k) is the k-th column of L
  584. *
  585. IF( K.LT.N ) THEN
  586. *
  587. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  588. *
  589. * A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
  590. *
  591. R1 = ONE / DBLE( A( K, K ) )
  592. CALL ZHER( UPLO, N-K, -R1, A( K+1, K ), 1,
  593. $ A( K+1, K+1 ), LDA )
  594. *
  595. * Store L(k) in column K
  596. *
  597. CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  598. END IF
  599. ELSE
  600. *
  601. * 2-by-2 pivot block D(k)
  602. *
  603. IF( K.LT.N-1 ) THEN
  604. *
  605. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  606. *
  607. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
  608. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
  609. *
  610. * where L(k) and L(k+1) are the k-th and (k+1)-th
  611. * columns of L
  612. *
  613. D = DLAPY2( DBLE( A( K+1, K ) ),
  614. $ DIMAG( A( K+1, K ) ) )
  615. D11 = DBLE( A( K+1, K+1 ) ) / D
  616. D22 = DBLE( A( K, K ) ) / D
  617. TT = ONE / ( D11*D22-ONE )
  618. D21 = A( K+1, K ) / D
  619. D = TT / D
  620. *
  621. DO 80 J = K + 2, N
  622. WK = D*( D11*A( J, K )-D21*A( J, K+1 ) )
  623. WKP1 = D*( D22*A( J, K+1 )-DCONJG( D21 )*
  624. $ A( J, K ) )
  625. DO 70 I = J, N
  626. A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
  627. $ A( I, K+1 )*DCONJG( WKP1 )
  628. 70 CONTINUE
  629. A( J, K ) = WK
  630. A( J, K+1 ) = WKP1
  631. A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
  632. 80 CONTINUE
  633. END IF
  634. END IF
  635. END IF
  636. *
  637. * Store details of the interchanges in IPIV
  638. *
  639. IF( KSTEP.EQ.1 ) THEN
  640. IPIV( K ) = KP
  641. ELSE
  642. IPIV( K ) = -KP
  643. IPIV( K+1 ) = -KP
  644. END IF
  645. *
  646. * Increase K and return to the start of the main loop
  647. *
  648. K = K + KSTEP
  649. GO TO 50
  650. *
  651. END IF
  652. *
  653. 90 CONTINUE
  654. RETURN
  655. *
  656. * End of ZHETF2
  657. *
  658. END