You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhegvd.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. *> \brief \b ZHEGVD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHEGVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
  22. * LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION RWORK( * ), W( * )
  31. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
  41. *> of a complex generalized Hermitian-definite eigenproblem, of the form
  42. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
  43. *> B are assumed to be Hermitian and B is also positive definite.
  44. *> If eigenvectors are desired, it uses a divide and conquer algorithm.
  45. *>
  46. *> The divide and conquer algorithm makes very mild assumptions about
  47. *> floating point arithmetic. It will work on machines with a guard
  48. *> digit in add/subtract, or on those binary machines without guard
  49. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  50. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  51. *> without guard digits, but we know of none.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] ITYPE
  58. *> \verbatim
  59. *> ITYPE is INTEGER
  60. *> Specifies the problem type to be solved:
  61. *> = 1: A*x = (lambda)*B*x
  62. *> = 2: A*B*x = (lambda)*x
  63. *> = 3: B*A*x = (lambda)*x
  64. *> \endverbatim
  65. *>
  66. *> \param[in] JOBZ
  67. *> \verbatim
  68. *> JOBZ is CHARACTER*1
  69. *> = 'N': Compute eigenvalues only;
  70. *> = 'V': Compute eigenvalues and eigenvectors.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] UPLO
  74. *> \verbatim
  75. *> UPLO is CHARACTER*1
  76. *> = 'U': Upper triangles of A and B are stored;
  77. *> = 'L': Lower triangles of A and B are stored.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The order of the matrices A and B. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in,out] A
  87. *> \verbatim
  88. *> A is COMPLEX*16 array, dimension (LDA, N)
  89. *> On entry, the Hermitian matrix A. If UPLO = 'U', the
  90. *> leading N-by-N upper triangular part of A contains the
  91. *> upper triangular part of the matrix A. If UPLO = 'L',
  92. *> the leading N-by-N lower triangular part of A contains
  93. *> the lower triangular part of the matrix A.
  94. *>
  95. *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
  96. *> matrix Z of eigenvectors. The eigenvectors are normalized
  97. *> as follows:
  98. *> if ITYPE = 1 or 2, Z**H*B*Z = I;
  99. *> if ITYPE = 3, Z**H*inv(B)*Z = I.
  100. *> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
  101. *> or the lower triangle (if UPLO='L') of A, including the
  102. *> diagonal, is destroyed.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDA
  106. *> \verbatim
  107. *> LDA is INTEGER
  108. *> The leading dimension of the array A. LDA >= max(1,N).
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] B
  112. *> \verbatim
  113. *> B is COMPLEX*16 array, dimension (LDB, N)
  114. *> On entry, the Hermitian matrix B. If UPLO = 'U', the
  115. *> leading N-by-N upper triangular part of B contains the
  116. *> upper triangular part of the matrix B. If UPLO = 'L',
  117. *> the leading N-by-N lower triangular part of B contains
  118. *> the lower triangular part of the matrix B.
  119. *>
  120. *> On exit, if INFO <= N, the part of B containing the matrix is
  121. *> overwritten by the triangular factor U or L from the Cholesky
  122. *> factorization B = U**H*U or B = L*L**H.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDB
  126. *> \verbatim
  127. *> LDB is INTEGER
  128. *> The leading dimension of the array B. LDB >= max(1,N).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] W
  132. *> \verbatim
  133. *> W is DOUBLE PRECISION array, dimension (N)
  134. *> If INFO = 0, the eigenvalues in ascending order.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] WORK
  138. *> \verbatim
  139. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  140. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  141. *> \endverbatim
  142. *>
  143. *> \param[in] LWORK
  144. *> \verbatim
  145. *> LWORK is INTEGER
  146. *> The length of the array WORK.
  147. *> If N <= 1, LWORK >= 1.
  148. *> If JOBZ = 'N' and N > 1, LWORK >= N + 1.
  149. *> If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2.
  150. *>
  151. *> If LWORK = -1, then a workspace query is assumed; the routine
  152. *> only calculates the optimal sizes of the WORK, RWORK and
  153. *> IWORK arrays, returns these values as the first entries of
  154. *> the WORK, RWORK and IWORK arrays, and no error message
  155. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  156. *> \endverbatim
  157. *>
  158. *> \param[out] RWORK
  159. *> \verbatim
  160. *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  161. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  162. *> \endverbatim
  163. *>
  164. *> \param[in] LRWORK
  165. *> \verbatim
  166. *> LRWORK is INTEGER
  167. *> The dimension of the array RWORK.
  168. *> If N <= 1, LRWORK >= 1.
  169. *> If JOBZ = 'N' and N > 1, LRWORK >= N.
  170. *> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
  171. *>
  172. *> If LRWORK = -1, then a workspace query is assumed; the
  173. *> routine only calculates the optimal sizes of the WORK, RWORK
  174. *> and IWORK arrays, returns these values as the first entries
  175. *> of the WORK, RWORK and IWORK arrays, and no error message
  176. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  177. *> \endverbatim
  178. *>
  179. *> \param[out] IWORK
  180. *> \verbatim
  181. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  182. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  183. *> \endverbatim
  184. *>
  185. *> \param[in] LIWORK
  186. *> \verbatim
  187. *> LIWORK is INTEGER
  188. *> The dimension of the array IWORK.
  189. *> If N <= 1, LIWORK >= 1.
  190. *> If JOBZ = 'N' and N > 1, LIWORK >= 1.
  191. *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
  192. *>
  193. *> If LIWORK = -1, then a workspace query is assumed; the
  194. *> routine only calculates the optimal sizes of the WORK, RWORK
  195. *> and IWORK arrays, returns these values as the first entries
  196. *> of the WORK, RWORK and IWORK arrays, and no error message
  197. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] INFO
  201. *> \verbatim
  202. *> INFO is INTEGER
  203. *> = 0: successful exit
  204. *> < 0: if INFO = -i, the i-th argument had an illegal value
  205. *> > 0: ZPOTRF or ZHEEVD returned an error code:
  206. *> <= N: if INFO = i and JOBZ = 'N', then the algorithm
  207. *> failed to converge; i off-diagonal elements of an
  208. *> intermediate tridiagonal form did not converge to
  209. *> zero;
  210. *> if INFO = i and JOBZ = 'V', then the algorithm
  211. *> failed to compute an eigenvalue while working on
  212. *> the submatrix lying in rows and columns INFO/(N+1)
  213. *> through mod(INFO,N+1);
  214. *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
  215. *> minor of order i of B is not positive definite.
  216. *> The factorization of B could not be completed and
  217. *> no eigenvalues or eigenvectors were computed.
  218. *> \endverbatim
  219. *
  220. * Authors:
  221. * ========
  222. *
  223. *> \author Univ. of Tennessee
  224. *> \author Univ. of California Berkeley
  225. *> \author Univ. of Colorado Denver
  226. *> \author NAG Ltd.
  227. *
  228. *> \ingroup complex16HEeigen
  229. *
  230. *> \par Further Details:
  231. * =====================
  232. *>
  233. *> \verbatim
  234. *>
  235. *> Modified so that no backsubstitution is performed if ZHEEVD fails to
  236. *> converge (NEIG in old code could be greater than N causing out of
  237. *> bounds reference to A - reported by Ralf Meyer). Also corrected the
  238. *> description of INFO and the test on ITYPE. Sven, 16 Feb 05.
  239. *> \endverbatim
  240. *
  241. *> \par Contributors:
  242. * ==================
  243. *>
  244. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  245. *>
  246. * =====================================================================
  247. SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
  248. $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  249. *
  250. * -- LAPACK driver routine --
  251. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  252. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  253. *
  254. * .. Scalar Arguments ..
  255. CHARACTER JOBZ, UPLO
  256. INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
  257. * ..
  258. * .. Array Arguments ..
  259. INTEGER IWORK( * )
  260. DOUBLE PRECISION RWORK( * ), W( * )
  261. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  262. * ..
  263. *
  264. * =====================================================================
  265. *
  266. * .. Parameters ..
  267. COMPLEX*16 CONE
  268. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  269. * ..
  270. * .. Local Scalars ..
  271. LOGICAL LQUERY, UPPER, WANTZ
  272. CHARACTER TRANS
  273. INTEGER LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
  274. * ..
  275. * .. External Functions ..
  276. LOGICAL LSAME
  277. EXTERNAL LSAME
  278. * ..
  279. * .. External Subroutines ..
  280. EXTERNAL XERBLA, ZHEEVD, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
  281. * ..
  282. * .. Intrinsic Functions ..
  283. INTRINSIC DBLE, MAX
  284. * ..
  285. * .. Executable Statements ..
  286. *
  287. * Test the input parameters.
  288. *
  289. WANTZ = LSAME( JOBZ, 'V' )
  290. UPPER = LSAME( UPLO, 'U' )
  291. LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  292. *
  293. INFO = 0
  294. IF( N.LE.1 ) THEN
  295. LWMIN = 1
  296. LRWMIN = 1
  297. LIWMIN = 1
  298. ELSE IF( WANTZ ) THEN
  299. LWMIN = 2*N + N*N
  300. LRWMIN = 1 + 5*N + 2*N*N
  301. LIWMIN = 3 + 5*N
  302. ELSE
  303. LWMIN = N + 1
  304. LRWMIN = N
  305. LIWMIN = 1
  306. END IF
  307. LOPT = LWMIN
  308. LROPT = LRWMIN
  309. LIOPT = LIWMIN
  310. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  311. INFO = -1
  312. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  313. INFO = -2
  314. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  315. INFO = -3
  316. ELSE IF( N.LT.0 ) THEN
  317. INFO = -4
  318. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  319. INFO = -6
  320. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  321. INFO = -8
  322. END IF
  323. *
  324. IF( INFO.EQ.0 ) THEN
  325. WORK( 1 ) = LOPT
  326. RWORK( 1 ) = LROPT
  327. IWORK( 1 ) = LIOPT
  328. *
  329. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  330. INFO = -11
  331. ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  332. INFO = -13
  333. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  334. INFO = -15
  335. END IF
  336. END IF
  337. *
  338. IF( INFO.NE.0 ) THEN
  339. CALL XERBLA( 'ZHEGVD', -INFO )
  340. RETURN
  341. ELSE IF( LQUERY ) THEN
  342. RETURN
  343. END IF
  344. *
  345. * Quick return if possible
  346. *
  347. IF( N.EQ.0 )
  348. $ RETURN
  349. *
  350. * Form a Cholesky factorization of B.
  351. *
  352. CALL ZPOTRF( UPLO, N, B, LDB, INFO )
  353. IF( INFO.NE.0 ) THEN
  354. INFO = N + INFO
  355. RETURN
  356. END IF
  357. *
  358. * Transform problem to standard eigenvalue problem and solve.
  359. *
  360. CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  361. CALL ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK,
  362. $ IWORK, LIWORK, INFO )
  363. LOPT = INT( MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) ) )
  364. LROPT = INT( MAX( DBLE( LROPT ), DBLE( RWORK( 1 ) ) ) )
  365. LIOPT = INT( MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) ) )
  366. *
  367. IF( WANTZ .AND. INFO.EQ.0 ) THEN
  368. *
  369. * Backtransform eigenvectors to the original problem.
  370. *
  371. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  372. *
  373. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  374. * backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
  375. *
  376. IF( UPPER ) THEN
  377. TRANS = 'N'
  378. ELSE
  379. TRANS = 'C'
  380. END IF
  381. *
  382. CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
  383. $ B, LDB, A, LDA )
  384. *
  385. ELSE IF( ITYPE.EQ.3 ) THEN
  386. *
  387. * For B*A*x=(lambda)*x;
  388. * backtransform eigenvectors: x = L*y or U**H *y
  389. *
  390. IF( UPPER ) THEN
  391. TRANS = 'C'
  392. ELSE
  393. TRANS = 'N'
  394. END IF
  395. *
  396. CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
  397. $ B, LDB, A, LDA )
  398. END IF
  399. END IF
  400. *
  401. WORK( 1 ) = LOPT
  402. RWORK( 1 ) = LROPT
  403. IWORK( 1 ) = LIOPT
  404. *
  405. RETURN
  406. *
  407. * End of ZHEGVD
  408. *
  409. END