You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zheevx.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561
  1. *> \brief <b> ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHEEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  22. * ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
  23. * IWORK, IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
  28. * DOUBLE PRECISION ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * DOUBLE PRECISION RWORK( * ), W( * )
  33. * COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
  43. *> of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
  44. *> be selected by specifying either a range of values or a range of
  45. *> indices for the desired eigenvalues.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] JOBZ
  52. *> \verbatim
  53. *> JOBZ is CHARACTER*1
  54. *> = 'N': Compute eigenvalues only;
  55. *> = 'V': Compute eigenvalues and eigenvectors.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] RANGE
  59. *> \verbatim
  60. *> RANGE is CHARACTER*1
  61. *> = 'A': all eigenvalues will be found.
  62. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  63. *> will be found.
  64. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] UPLO
  68. *> \verbatim
  69. *> UPLO is CHARACTER*1
  70. *> = 'U': Upper triangle of A is stored;
  71. *> = 'L': Lower triangle of A is stored.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> The order of the matrix A. N >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] A
  81. *> \verbatim
  82. *> A is COMPLEX*16 array, dimension (LDA, N)
  83. *> On entry, the Hermitian matrix A. If UPLO = 'U', the
  84. *> leading N-by-N upper triangular part of A contains the
  85. *> upper triangular part of the matrix A. If UPLO = 'L',
  86. *> the leading N-by-N lower triangular part of A contains
  87. *> the lower triangular part of the matrix A.
  88. *> On exit, the lower triangle (if UPLO='L') or the upper
  89. *> triangle (if UPLO='U') of A, including the diagonal, is
  90. *> destroyed.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDA
  94. *> \verbatim
  95. *> LDA is INTEGER
  96. *> The leading dimension of the array A. LDA >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[in] VL
  100. *> \verbatim
  101. *> VL is DOUBLE PRECISION
  102. *> If RANGE='V', the lower bound of the interval to
  103. *> be searched for eigenvalues. VL < VU.
  104. *> Not referenced if RANGE = 'A' or 'I'.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] VU
  108. *> \verbatim
  109. *> VU is DOUBLE PRECISION
  110. *> If RANGE='V', the upper bound of the interval to
  111. *> be searched for eigenvalues. VL < VU.
  112. *> Not referenced if RANGE = 'A' or 'I'.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] IL
  116. *> \verbatim
  117. *> IL is INTEGER
  118. *> If RANGE='I', the index of the
  119. *> smallest eigenvalue to be returned.
  120. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  121. *> Not referenced if RANGE = 'A' or 'V'.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] IU
  125. *> \verbatim
  126. *> IU is INTEGER
  127. *> If RANGE='I', the index of the
  128. *> largest eigenvalue to be returned.
  129. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  130. *> Not referenced if RANGE = 'A' or 'V'.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] ABSTOL
  134. *> \verbatim
  135. *> ABSTOL is DOUBLE PRECISION
  136. *> The absolute error tolerance for the eigenvalues.
  137. *> An approximate eigenvalue is accepted as converged
  138. *> when it is determined to lie in an interval [a,b]
  139. *> of width less than or equal to
  140. *>
  141. *> ABSTOL + EPS * max( |a|,|b| ) ,
  142. *>
  143. *> where EPS is the machine precision. If ABSTOL is less than
  144. *> or equal to zero, then EPS*|T| will be used in its place,
  145. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  146. *> by reducing A to tridiagonal form.
  147. *>
  148. *> Eigenvalues will be computed most accurately when ABSTOL is
  149. *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  150. *> If this routine returns with INFO>0, indicating that some
  151. *> eigenvectors did not converge, try setting ABSTOL to
  152. *> 2*DLAMCH('S').
  153. *>
  154. *> See "Computing Small Singular Values of Bidiagonal Matrices
  155. *> with Guaranteed High Relative Accuracy," by Demmel and
  156. *> Kahan, LAPACK Working Note #3.
  157. *> \endverbatim
  158. *>
  159. *> \param[out] M
  160. *> \verbatim
  161. *> M is INTEGER
  162. *> The total number of eigenvalues found. 0 <= M <= N.
  163. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  164. *> \endverbatim
  165. *>
  166. *> \param[out] W
  167. *> \verbatim
  168. *> W is DOUBLE PRECISION array, dimension (N)
  169. *> On normal exit, the first M elements contain the selected
  170. *> eigenvalues in ascending order.
  171. *> \endverbatim
  172. *>
  173. *> \param[out] Z
  174. *> \verbatim
  175. *> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  176. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  177. *> contain the orthonormal eigenvectors of the matrix A
  178. *> corresponding to the selected eigenvalues, with the i-th
  179. *> column of Z holding the eigenvector associated with W(i).
  180. *> If an eigenvector fails to converge, then that column of Z
  181. *> contains the latest approximation to the eigenvector, and the
  182. *> index of the eigenvector is returned in IFAIL.
  183. *> If JOBZ = 'N', then Z is not referenced.
  184. *> Note: the user must ensure that at least max(1,M) columns are
  185. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  186. *> is not known in advance and an upper bound must be used.
  187. *> \endverbatim
  188. *>
  189. *> \param[in] LDZ
  190. *> \verbatim
  191. *> LDZ is INTEGER
  192. *> The leading dimension of the array Z. LDZ >= 1, and if
  193. *> JOBZ = 'V', LDZ >= max(1,N).
  194. *> \endverbatim
  195. *>
  196. *> \param[out] WORK
  197. *> \verbatim
  198. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  199. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  200. *> \endverbatim
  201. *>
  202. *> \param[in] LWORK
  203. *> \verbatim
  204. *> LWORK is INTEGER
  205. *> The length of the array WORK. LWORK >= 1, when N <= 1;
  206. *> otherwise 2*N.
  207. *> For optimal efficiency, LWORK >= (NB+1)*N,
  208. *> where NB is the max of the blocksize for ZHETRD and for
  209. *> ZUNMTR as returned by ILAENV.
  210. *>
  211. *> If LWORK = -1, then a workspace query is assumed; the routine
  212. *> only calculates the optimal size of the WORK array, returns
  213. *> this value as the first entry of the WORK array, and no error
  214. *> message related to LWORK is issued by XERBLA.
  215. *> \endverbatim
  216. *>
  217. *> \param[out] RWORK
  218. *> \verbatim
  219. *> RWORK is DOUBLE PRECISION array, dimension (7*N)
  220. *> \endverbatim
  221. *>
  222. *> \param[out] IWORK
  223. *> \verbatim
  224. *> IWORK is INTEGER array, dimension (5*N)
  225. *> \endverbatim
  226. *>
  227. *> \param[out] IFAIL
  228. *> \verbatim
  229. *> IFAIL is INTEGER array, dimension (N)
  230. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  231. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  232. *> indices of the eigenvectors that failed to converge.
  233. *> If JOBZ = 'N', then IFAIL is not referenced.
  234. *> \endverbatim
  235. *>
  236. *> \param[out] INFO
  237. *> \verbatim
  238. *> INFO is INTEGER
  239. *> = 0: successful exit
  240. *> < 0: if INFO = -i, the i-th argument had an illegal value
  241. *> > 0: if INFO = i, then i eigenvectors failed to converge.
  242. *> Their indices are stored in array IFAIL.
  243. *> \endverbatim
  244. *
  245. * Authors:
  246. * ========
  247. *
  248. *> \author Univ. of Tennessee
  249. *> \author Univ. of California Berkeley
  250. *> \author Univ. of Colorado Denver
  251. *> \author NAG Ltd.
  252. *
  253. *> \ingroup complex16HEeigen
  254. *
  255. * =====================================================================
  256. SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  257. $ ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
  258. $ IWORK, IFAIL, INFO )
  259. *
  260. * -- LAPACK driver routine --
  261. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  262. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  263. *
  264. * .. Scalar Arguments ..
  265. CHARACTER JOBZ, RANGE, UPLO
  266. INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
  267. DOUBLE PRECISION ABSTOL, VL, VU
  268. * ..
  269. * .. Array Arguments ..
  270. INTEGER IFAIL( * ), IWORK( * )
  271. DOUBLE PRECISION RWORK( * ), W( * )
  272. COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
  273. * ..
  274. *
  275. * =====================================================================
  276. *
  277. * .. Parameters ..
  278. DOUBLE PRECISION ZERO, ONE
  279. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  280. COMPLEX*16 CONE
  281. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  282. * ..
  283. * .. Local Scalars ..
  284. LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  285. $ WANTZ
  286. CHARACTER ORDER
  287. INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  288. $ INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  289. $ ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
  290. $ NSPLIT
  291. DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  292. $ SIGMA, SMLNUM, TMP1, VLL, VUU
  293. * ..
  294. * .. External Functions ..
  295. LOGICAL LSAME
  296. INTEGER ILAENV
  297. DOUBLE PRECISION DLAMCH, ZLANHE
  298. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANHE
  299. * ..
  300. * .. External Subroutines ..
  301. EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  302. $ ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
  303. $ ZUNMTR
  304. * ..
  305. * .. Intrinsic Functions ..
  306. INTRINSIC DBLE, MAX, MIN, SQRT
  307. * ..
  308. * .. Executable Statements ..
  309. *
  310. * Test the input parameters.
  311. *
  312. LOWER = LSAME( UPLO, 'L' )
  313. WANTZ = LSAME( JOBZ, 'V' )
  314. ALLEIG = LSAME( RANGE, 'A' )
  315. VALEIG = LSAME( RANGE, 'V' )
  316. INDEIG = LSAME( RANGE, 'I' )
  317. LQUERY = ( LWORK.EQ.-1 )
  318. *
  319. INFO = 0
  320. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  321. INFO = -1
  322. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  323. INFO = -2
  324. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  325. INFO = -3
  326. ELSE IF( N.LT.0 ) THEN
  327. INFO = -4
  328. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  329. INFO = -6
  330. ELSE
  331. IF( VALEIG ) THEN
  332. IF( N.GT.0 .AND. VU.LE.VL )
  333. $ INFO = -8
  334. ELSE IF( INDEIG ) THEN
  335. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  336. INFO = -9
  337. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  338. INFO = -10
  339. END IF
  340. END IF
  341. END IF
  342. IF( INFO.EQ.0 ) THEN
  343. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  344. INFO = -15
  345. END IF
  346. END IF
  347. *
  348. IF( INFO.EQ.0 ) THEN
  349. IF( N.LE.1 ) THEN
  350. LWKMIN = 1
  351. WORK( 1 ) = LWKMIN
  352. ELSE
  353. LWKMIN = 2*N
  354. NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  355. NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  356. LWKOPT = MAX( 1, ( NB + 1 )*N )
  357. WORK( 1 ) = LWKOPT
  358. END IF
  359. *
  360. IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  361. $ INFO = -17
  362. END IF
  363. *
  364. IF( INFO.NE.0 ) THEN
  365. CALL XERBLA( 'ZHEEVX', -INFO )
  366. RETURN
  367. ELSE IF( LQUERY ) THEN
  368. RETURN
  369. END IF
  370. *
  371. * Quick return if possible
  372. *
  373. M = 0
  374. IF( N.EQ.0 ) THEN
  375. RETURN
  376. END IF
  377. *
  378. IF( N.EQ.1 ) THEN
  379. IF( ALLEIG .OR. INDEIG ) THEN
  380. M = 1
  381. W( 1 ) = DBLE( A( 1, 1 ) )
  382. ELSE IF( VALEIG ) THEN
  383. IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  384. $ THEN
  385. M = 1
  386. W( 1 ) = DBLE( A( 1, 1 ) )
  387. END IF
  388. END IF
  389. IF( WANTZ )
  390. $ Z( 1, 1 ) = CONE
  391. RETURN
  392. END IF
  393. *
  394. * Get machine constants.
  395. *
  396. SAFMIN = DLAMCH( 'Safe minimum' )
  397. EPS = DLAMCH( 'Precision' )
  398. SMLNUM = SAFMIN / EPS
  399. BIGNUM = ONE / SMLNUM
  400. RMIN = SQRT( SMLNUM )
  401. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  402. *
  403. * Scale matrix to allowable range, if necessary.
  404. *
  405. ISCALE = 0
  406. ABSTLL = ABSTOL
  407. IF( VALEIG ) THEN
  408. VLL = VL
  409. VUU = VU
  410. END IF
  411. ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
  412. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  413. ISCALE = 1
  414. SIGMA = RMIN / ANRM
  415. ELSE IF( ANRM.GT.RMAX ) THEN
  416. ISCALE = 1
  417. SIGMA = RMAX / ANRM
  418. END IF
  419. IF( ISCALE.EQ.1 ) THEN
  420. IF( LOWER ) THEN
  421. DO 10 J = 1, N
  422. CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  423. 10 CONTINUE
  424. ELSE
  425. DO 20 J = 1, N
  426. CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  427. 20 CONTINUE
  428. END IF
  429. IF( ABSTOL.GT.0 )
  430. $ ABSTLL = ABSTOL*SIGMA
  431. IF( VALEIG ) THEN
  432. VLL = VL*SIGMA
  433. VUU = VU*SIGMA
  434. END IF
  435. END IF
  436. *
  437. * Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  438. *
  439. INDD = 1
  440. INDE = INDD + N
  441. INDRWK = INDE + N
  442. INDTAU = 1
  443. INDWRK = INDTAU + N
  444. LLWORK = LWORK - INDWRK + 1
  445. CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
  446. $ WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
  447. *
  448. * If all eigenvalues are desired and ABSTOL is less than or equal to
  449. * zero, then call DSTERF or ZUNGTR and ZSTEQR. If this fails for
  450. * some eigenvalue, then try DSTEBZ.
  451. *
  452. TEST = .FALSE.
  453. IF( INDEIG ) THEN
  454. IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  455. TEST = .TRUE.
  456. END IF
  457. END IF
  458. IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  459. CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  460. INDEE = INDRWK + 2*N
  461. IF( .NOT.WANTZ ) THEN
  462. CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  463. CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  464. ELSE
  465. CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
  466. CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  467. $ WORK( INDWRK ), LLWORK, IINFO )
  468. CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  469. CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  470. $ RWORK( INDRWK ), INFO )
  471. IF( INFO.EQ.0 ) THEN
  472. DO 30 I = 1, N
  473. IFAIL( I ) = 0
  474. 30 CONTINUE
  475. END IF
  476. END IF
  477. IF( INFO.EQ.0 ) THEN
  478. M = N
  479. GO TO 40
  480. END IF
  481. INFO = 0
  482. END IF
  483. *
  484. * Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  485. *
  486. IF( WANTZ ) THEN
  487. ORDER = 'B'
  488. ELSE
  489. ORDER = 'E'
  490. END IF
  491. INDIBL = 1
  492. INDISP = INDIBL + N
  493. INDIWK = INDISP + N
  494. CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  495. $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  496. $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  497. $ IWORK( INDIWK ), INFO )
  498. *
  499. IF( WANTZ ) THEN
  500. CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  501. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  502. $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  503. *
  504. * Apply unitary matrix used in reduction to tridiagonal
  505. * form to eigenvectors returned by ZSTEIN.
  506. *
  507. CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  508. $ LDZ, WORK( INDWRK ), LLWORK, IINFO )
  509. END IF
  510. *
  511. * If matrix was scaled, then rescale eigenvalues appropriately.
  512. *
  513. 40 CONTINUE
  514. IF( ISCALE.EQ.1 ) THEN
  515. IF( INFO.EQ.0 ) THEN
  516. IMAX = M
  517. ELSE
  518. IMAX = INFO - 1
  519. END IF
  520. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  521. END IF
  522. *
  523. * If eigenvalues are not in order, then sort them, along with
  524. * eigenvectors.
  525. *
  526. IF( WANTZ ) THEN
  527. DO 60 J = 1, M - 1
  528. I = 0
  529. TMP1 = W( J )
  530. DO 50 JJ = J + 1, M
  531. IF( W( JJ ).LT.TMP1 ) THEN
  532. I = JJ
  533. TMP1 = W( JJ )
  534. END IF
  535. 50 CONTINUE
  536. *
  537. IF( I.NE.0 ) THEN
  538. ITMP1 = IWORK( INDIBL+I-1 )
  539. W( I ) = W( J )
  540. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  541. W( J ) = TMP1
  542. IWORK( INDIBL+J-1 ) = ITMP1
  543. CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  544. IF( INFO.NE.0 ) THEN
  545. ITMP1 = IFAIL( I )
  546. IFAIL( I ) = IFAIL( J )
  547. IFAIL( J ) = ITMP1
  548. END IF
  549. END IF
  550. 60 CONTINUE
  551. END IF
  552. *
  553. * Set WORK(1) to optimal complex workspace size.
  554. *
  555. WORK( 1 ) = LWKOPT
  556. *
  557. RETURN
  558. *
  559. * End of ZHEEVX
  560. *
  561. END