You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgels.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. *> \brief <b> ZGELS solves overdetermined or underdetermined systems for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGELS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgels.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgels.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgels.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZGELS solves overdetermined or underdetermined complex linear systems
  39. *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
  40. *> or LQ factorization of A. It is assumed that A has full rank.
  41. *>
  42. *> The following options are provided:
  43. *>
  44. *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
  45. *> an overdetermined system, i.e., solve the least squares problem
  46. *> minimize || B - A*X ||.
  47. *>
  48. *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
  49. *> an underdetermined system A * X = B.
  50. *>
  51. *> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
  52. *> an underdetermined system A**H * X = B.
  53. *>
  54. *> 4. If TRANS = 'C' and m < n: find the least squares solution of
  55. *> an overdetermined system, i.e., solve the least squares problem
  56. *> minimize || B - A**H * X ||.
  57. *>
  58. *> Several right hand side vectors b and solution vectors x can be
  59. *> handled in a single call; they are stored as the columns of the
  60. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  61. *> matrix X.
  62. *> \endverbatim
  63. *
  64. * Arguments:
  65. * ==========
  66. *
  67. *> \param[in] TRANS
  68. *> \verbatim
  69. *> TRANS is CHARACTER*1
  70. *> = 'N': the linear system involves A;
  71. *> = 'C': the linear system involves A**H.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> The number of rows of the matrix A. M >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The number of columns of the matrix A. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] NRHS
  87. *> \verbatim
  88. *> NRHS is INTEGER
  89. *> The number of right hand sides, i.e., the number of
  90. *> columns of the matrices B and X. NRHS >= 0.
  91. *> \endverbatim
  92. *>
  93. *> \param[in,out] A
  94. *> \verbatim
  95. *> A is COMPLEX*16 array, dimension (LDA,N)
  96. *> On entry, the M-by-N matrix A.
  97. *> if M >= N, A is overwritten by details of its QR
  98. *> factorization as returned by ZGEQRF;
  99. *> if M < N, A is overwritten by details of its LQ
  100. *> factorization as returned by ZGELQF.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDA
  104. *> \verbatim
  105. *> LDA is INTEGER
  106. *> The leading dimension of the array A. LDA >= max(1,M).
  107. *> \endverbatim
  108. *>
  109. *> \param[in,out] B
  110. *> \verbatim
  111. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  112. *> On entry, the matrix B of right hand side vectors, stored
  113. *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  114. *> if TRANS = 'C'.
  115. *> On exit, if INFO = 0, B is overwritten by the solution
  116. *> vectors, stored columnwise:
  117. *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  118. *> squares solution vectors; the residual sum of squares for the
  119. *> solution in each column is given by the sum of squares of the
  120. *> modulus of elements N+1 to M in that column;
  121. *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
  122. *> minimum norm solution vectors;
  123. *> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  124. *> minimum norm solution vectors;
  125. *> if TRANS = 'C' and m < n, rows 1 to M of B contain the
  126. *> least squares solution vectors; the residual sum of squares
  127. *> for the solution in each column is given by the sum of
  128. *> squares of the modulus of elements M+1 to N in that column.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] LDB
  132. *> \verbatim
  133. *> LDB is INTEGER
  134. *> The leading dimension of the array B. LDB >= MAX(1,M,N).
  135. *> \endverbatim
  136. *>
  137. *> \param[out] WORK
  138. *> \verbatim
  139. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  140. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  141. *> \endverbatim
  142. *>
  143. *> \param[in] LWORK
  144. *> \verbatim
  145. *> LWORK is INTEGER
  146. *> The dimension of the array WORK.
  147. *> LWORK >= max( 1, MN + max( MN, NRHS ) ).
  148. *> For optimal performance,
  149. *> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
  150. *> where MN = min(M,N) and NB is the optimum block size.
  151. *>
  152. *> If LWORK = -1, then a workspace query is assumed; the routine
  153. *> only calculates the optimal size of the WORK array, returns
  154. *> this value as the first entry of the WORK array, and no error
  155. *> message related to LWORK is issued by XERBLA.
  156. *> \endverbatim
  157. *>
  158. *> \param[out] INFO
  159. *> \verbatim
  160. *> INFO is INTEGER
  161. *> = 0: successful exit
  162. *> < 0: if INFO = -i, the i-th argument had an illegal value
  163. *> > 0: if INFO = i, the i-th diagonal element of the
  164. *> triangular factor of A is zero, so that A does not have
  165. *> full rank; the least squares solution could not be
  166. *> computed.
  167. *> \endverbatim
  168. *
  169. * Authors:
  170. * ========
  171. *
  172. *> \author Univ. of Tennessee
  173. *> \author Univ. of California Berkeley
  174. *> \author Univ. of Colorado Denver
  175. *> \author NAG Ltd.
  176. *
  177. *> \ingroup complex16GEsolve
  178. *
  179. * =====================================================================
  180. SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  181. $ INFO )
  182. *
  183. * -- LAPACK driver routine --
  184. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  185. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  186. *
  187. * .. Scalar Arguments ..
  188. CHARACTER TRANS
  189. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  190. * ..
  191. * .. Array Arguments ..
  192. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  193. * ..
  194. *
  195. * =====================================================================
  196. *
  197. * .. Parameters ..
  198. DOUBLE PRECISION ZERO, ONE
  199. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  200. COMPLEX*16 CZERO
  201. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  202. * ..
  203. * .. Local Scalars ..
  204. LOGICAL LQUERY, TPSD
  205. INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
  206. DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
  207. * ..
  208. * .. Local Arrays ..
  209. DOUBLE PRECISION RWORK( 1 )
  210. * ..
  211. * .. External Functions ..
  212. LOGICAL LSAME
  213. INTEGER ILAENV
  214. DOUBLE PRECISION DLAMCH, ZLANGE
  215. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
  216. * ..
  217. * .. External Subroutines ..
  218. EXTERNAL DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
  219. $ ZTRTRS, ZUNMLQ, ZUNMQR
  220. * ..
  221. * .. Intrinsic Functions ..
  222. INTRINSIC DBLE, MAX, MIN
  223. * ..
  224. * .. Executable Statements ..
  225. *
  226. * Test the input arguments.
  227. *
  228. INFO = 0
  229. MN = MIN( M, N )
  230. LQUERY = ( LWORK.EQ.-1 )
  231. IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
  232. INFO = -1
  233. ELSE IF( M.LT.0 ) THEN
  234. INFO = -2
  235. ELSE IF( N.LT.0 ) THEN
  236. INFO = -3
  237. ELSE IF( NRHS.LT.0 ) THEN
  238. INFO = -4
  239. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  240. INFO = -6
  241. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  242. INFO = -8
  243. ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
  244. $ THEN
  245. INFO = -10
  246. END IF
  247. *
  248. * Figure out optimal block size
  249. *
  250. IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
  251. *
  252. TPSD = .TRUE.
  253. IF( LSAME( TRANS, 'N' ) )
  254. $ TPSD = .FALSE.
  255. *
  256. IF( M.GE.N ) THEN
  257. NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
  258. IF( TPSD ) THEN
  259. NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
  260. $ -1 ) )
  261. ELSE
  262. NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
  263. $ -1 ) )
  264. END IF
  265. ELSE
  266. NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
  267. IF( TPSD ) THEN
  268. NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
  269. $ -1 ) )
  270. ELSE
  271. NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
  272. $ -1 ) )
  273. END IF
  274. END IF
  275. *
  276. WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
  277. WORK( 1 ) = DBLE( WSIZE )
  278. *
  279. END IF
  280. *
  281. IF( INFO.NE.0 ) THEN
  282. CALL XERBLA( 'ZGELS ', -INFO )
  283. RETURN
  284. ELSE IF( LQUERY ) THEN
  285. RETURN
  286. END IF
  287. *
  288. * Quick return if possible
  289. *
  290. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  291. CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  292. RETURN
  293. END IF
  294. *
  295. * Get machine parameters
  296. *
  297. SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  298. BIGNUM = ONE / SMLNUM
  299. CALL DLABAD( SMLNUM, BIGNUM )
  300. *
  301. * Scale A, B if max element outside range [SMLNUM,BIGNUM]
  302. *
  303. ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  304. IASCL = 0
  305. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  306. *
  307. * Scale matrix norm up to SMLNUM
  308. *
  309. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  310. IASCL = 1
  311. ELSE IF( ANRM.GT.BIGNUM ) THEN
  312. *
  313. * Scale matrix norm down to BIGNUM
  314. *
  315. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  316. IASCL = 2
  317. ELSE IF( ANRM.EQ.ZERO ) THEN
  318. *
  319. * Matrix all zero. Return zero solution.
  320. *
  321. CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  322. GO TO 50
  323. END IF
  324. *
  325. BROW = M
  326. IF( TPSD )
  327. $ BROW = N
  328. BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
  329. IBSCL = 0
  330. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  331. *
  332. * Scale matrix norm up to SMLNUM
  333. *
  334. CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  335. $ INFO )
  336. IBSCL = 1
  337. ELSE IF( BNRM.GT.BIGNUM ) THEN
  338. *
  339. * Scale matrix norm down to BIGNUM
  340. *
  341. CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  342. $ INFO )
  343. IBSCL = 2
  344. END IF
  345. *
  346. IF( M.GE.N ) THEN
  347. *
  348. * compute QR factorization of A
  349. *
  350. CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  351. $ INFO )
  352. *
  353. * workspace at least N, optimally N*NB
  354. *
  355. IF( .NOT.TPSD ) THEN
  356. *
  357. * Least-Squares Problem min || A * X - B ||
  358. *
  359. * B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
  360. *
  361. CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
  362. $ LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  363. $ INFO )
  364. *
  365. * workspace at least NRHS, optimally NRHS*NB
  366. *
  367. * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  368. *
  369. CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
  370. $ A, LDA, B, LDB, INFO )
  371. *
  372. IF( INFO.GT.0 ) THEN
  373. RETURN
  374. END IF
  375. *
  376. SCLLEN = N
  377. *
  378. ELSE
  379. *
  380. * Underdetermined system of equations A**T * X = B
  381. *
  382. * B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS)
  383. *
  384. CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
  385. $ N, NRHS, A, LDA, B, LDB, INFO )
  386. *
  387. IF( INFO.GT.0 ) THEN
  388. RETURN
  389. END IF
  390. *
  391. * B(N+1:M,1:NRHS) = ZERO
  392. *
  393. DO 20 J = 1, NRHS
  394. DO 10 I = N + 1, M
  395. B( I, J ) = CZERO
  396. 10 CONTINUE
  397. 20 CONTINUE
  398. *
  399. * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  400. *
  401. CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
  402. $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  403. $ INFO )
  404. *
  405. * workspace at least NRHS, optimally NRHS*NB
  406. *
  407. SCLLEN = M
  408. *
  409. END IF
  410. *
  411. ELSE
  412. *
  413. * Compute LQ factorization of A
  414. *
  415. CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  416. $ INFO )
  417. *
  418. * workspace at least M, optimally M*NB.
  419. *
  420. IF( .NOT.TPSD ) THEN
  421. *
  422. * underdetermined system of equations A * X = B
  423. *
  424. * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  425. *
  426. CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
  427. $ A, LDA, B, LDB, INFO )
  428. *
  429. IF( INFO.GT.0 ) THEN
  430. RETURN
  431. END IF
  432. *
  433. * B(M+1:N,1:NRHS) = 0
  434. *
  435. DO 40 J = 1, NRHS
  436. DO 30 I = M + 1, N
  437. B( I, J ) = CZERO
  438. 30 CONTINUE
  439. 40 CONTINUE
  440. *
  441. * B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS)
  442. *
  443. CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
  444. $ LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  445. $ INFO )
  446. *
  447. * workspace at least NRHS, optimally NRHS*NB
  448. *
  449. SCLLEN = N
  450. *
  451. ELSE
  452. *
  453. * overdetermined system min || A**H * X - B ||
  454. *
  455. * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  456. *
  457. CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
  458. $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  459. $ INFO )
  460. *
  461. * workspace at least NRHS, optimally NRHS*NB
  462. *
  463. * B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS)
  464. *
  465. CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
  466. $ M, NRHS, A, LDA, B, LDB, INFO )
  467. *
  468. IF( INFO.GT.0 ) THEN
  469. RETURN
  470. END IF
  471. *
  472. SCLLEN = M
  473. *
  474. END IF
  475. *
  476. END IF
  477. *
  478. * Undo scaling
  479. *
  480. IF( IASCL.EQ.1 ) THEN
  481. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  482. $ INFO )
  483. ELSE IF( IASCL.EQ.2 ) THEN
  484. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  485. $ INFO )
  486. END IF
  487. IF( IBSCL.EQ.1 ) THEN
  488. CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  489. $ INFO )
  490. ELSE IF( IBSCL.EQ.2 ) THEN
  491. CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  492. $ INFO )
  493. END IF
  494. *
  495. 50 CONTINUE
  496. WORK( 1 ) = DBLE( WSIZE )
  497. *
  498. RETURN
  499. *
  500. * End of ZGELS
  501. *
  502. END