You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaed2.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. *> \brief \b SLAED2 used by SSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLAED2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
  22. * Q2, INDX, INDXC, INDXP, COLTYP, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, K, LDQ, N, N1
  26. * REAL RHO
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
  30. * $ INDXQ( * )
  31. * REAL D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
  32. * $ W( * ), Z( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> SLAED2 merges the two sets of eigenvalues together into a single
  42. *> sorted set. Then it tries to deflate the size of the problem.
  43. *> There are two ways in which deflation can occur: when two or more
  44. *> eigenvalues are close together or if there is a tiny entry in the
  45. *> Z vector. For each such occurrence the order of the related secular
  46. *> equation problem is reduced by one.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[out] K
  53. *> \verbatim
  54. *> K is INTEGER
  55. *> The number of non-deflated eigenvalues, and the order of the
  56. *> related secular equation. 0 <= K <=N.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> The dimension of the symmetric tridiagonal matrix. N >= 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N1
  66. *> \verbatim
  67. *> N1 is INTEGER
  68. *> The location of the last eigenvalue in the leading sub-matrix.
  69. *> min(1,N) <= N1 <= N/2.
  70. *> \endverbatim
  71. *>
  72. *> \param[in,out] D
  73. *> \verbatim
  74. *> D is REAL array, dimension (N)
  75. *> On entry, D contains the eigenvalues of the two submatrices to
  76. *> be combined.
  77. *> On exit, D contains the trailing (N-K) updated eigenvalues
  78. *> (those which were deflated) sorted into increasing order.
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] Q
  82. *> \verbatim
  83. *> Q is REAL array, dimension (LDQ, N)
  84. *> On entry, Q contains the eigenvectors of two submatrices in
  85. *> the two square blocks with corners at (1,1), (N1,N1)
  86. *> and (N1+1, N1+1), (N,N).
  87. *> On exit, Q contains the trailing (N-K) updated eigenvectors
  88. *> (those which were deflated) in its last N-K columns.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] LDQ
  92. *> \verbatim
  93. *> LDQ is INTEGER
  94. *> The leading dimension of the array Q. LDQ >= max(1,N).
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] INDXQ
  98. *> \verbatim
  99. *> INDXQ is INTEGER array, dimension (N)
  100. *> The permutation which separately sorts the two sub-problems
  101. *> in D into ascending order. Note that elements in the second
  102. *> half of this permutation must first have N1 added to their
  103. *> values. Destroyed on exit.
  104. *> \endverbatim
  105. *>
  106. *> \param[in,out] RHO
  107. *> \verbatim
  108. *> RHO is REAL
  109. *> On entry, the off-diagonal element associated with the rank-1
  110. *> cut which originally split the two submatrices which are now
  111. *> being recombined.
  112. *> On exit, RHO has been modified to the value required by
  113. *> SLAED3.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] Z
  117. *> \verbatim
  118. *> Z is REAL array, dimension (N)
  119. *> On entry, Z contains the updating vector (the last
  120. *> row of the first sub-eigenvector matrix and the first row of
  121. *> the second sub-eigenvector matrix).
  122. *> On exit, the contents of Z have been destroyed by the updating
  123. *> process.
  124. *> \endverbatim
  125. *>
  126. *> \param[out] DLAMDA
  127. *> \verbatim
  128. *> DLAMDA is REAL array, dimension (N)
  129. *> A copy of the first K eigenvalues which will be used by
  130. *> SLAED3 to form the secular equation.
  131. *> \endverbatim
  132. *>
  133. *> \param[out] W
  134. *> \verbatim
  135. *> W is REAL array, dimension (N)
  136. *> The first k values of the final deflation-altered z-vector
  137. *> which will be passed to SLAED3.
  138. *> \endverbatim
  139. *>
  140. *> \param[out] Q2
  141. *> \verbatim
  142. *> Q2 is REAL array, dimension (N1**2+(N-N1)**2)
  143. *> A copy of the first K eigenvectors which will be used by
  144. *> SLAED3 in a matrix multiply (SGEMM) to solve for the new
  145. *> eigenvectors.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] INDX
  149. *> \verbatim
  150. *> INDX is INTEGER array, dimension (N)
  151. *> The permutation used to sort the contents of DLAMDA into
  152. *> ascending order.
  153. *> \endverbatim
  154. *>
  155. *> \param[out] INDXC
  156. *> \verbatim
  157. *> INDXC is INTEGER array, dimension (N)
  158. *> The permutation used to arrange the columns of the deflated
  159. *> Q matrix into three groups: the first group contains non-zero
  160. *> elements only at and above N1, the second contains
  161. *> non-zero elements only below N1, and the third is dense.
  162. *> \endverbatim
  163. *>
  164. *> \param[out] INDXP
  165. *> \verbatim
  166. *> INDXP is INTEGER array, dimension (N)
  167. *> The permutation used to place deflated values of D at the end
  168. *> of the array. INDXP(1:K) points to the nondeflated D-values
  169. *> and INDXP(K+1:N) points to the deflated eigenvalues.
  170. *> \endverbatim
  171. *>
  172. *> \param[out] COLTYP
  173. *> \verbatim
  174. *> COLTYP is INTEGER array, dimension (N)
  175. *> During execution, a label which will indicate which of the
  176. *> following types a column in the Q2 matrix is:
  177. *> 1 : non-zero in the upper half only;
  178. *> 2 : dense;
  179. *> 3 : non-zero in the lower half only;
  180. *> 4 : deflated.
  181. *> On exit, COLTYP(i) is the number of columns of type i,
  182. *> for i=1 to 4 only.
  183. *> \endverbatim
  184. *>
  185. *> \param[out] INFO
  186. *> \verbatim
  187. *> INFO is INTEGER
  188. *> = 0: successful exit.
  189. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  190. *> \endverbatim
  191. *
  192. * Authors:
  193. * ========
  194. *
  195. *> \author Univ. of Tennessee
  196. *> \author Univ. of California Berkeley
  197. *> \author Univ. of Colorado Denver
  198. *> \author NAG Ltd.
  199. *
  200. *> \ingroup auxOTHERcomputational
  201. *
  202. *> \par Contributors:
  203. * ==================
  204. *>
  205. *> Jeff Rutter, Computer Science Division, University of California
  206. *> at Berkeley, USA \n
  207. *> Modified by Francoise Tisseur, University of Tennessee
  208. *>
  209. * =====================================================================
  210. SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
  211. $ Q2, INDX, INDXC, INDXP, COLTYP, INFO )
  212. *
  213. * -- LAPACK computational routine --
  214. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  215. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  216. *
  217. * .. Scalar Arguments ..
  218. INTEGER INFO, K, LDQ, N, N1
  219. REAL RHO
  220. * ..
  221. * .. Array Arguments ..
  222. INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
  223. $ INDXQ( * )
  224. REAL D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
  225. $ W( * ), Z( * )
  226. * ..
  227. *
  228. * =====================================================================
  229. *
  230. * .. Parameters ..
  231. REAL MONE, ZERO, ONE, TWO, EIGHT
  232. PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
  233. $ TWO = 2.0E0, EIGHT = 8.0E0 )
  234. * ..
  235. * .. Local Arrays ..
  236. INTEGER CTOT( 4 ), PSM( 4 )
  237. * ..
  238. * .. Local Scalars ..
  239. INTEGER CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
  240. $ N2, NJ, PJ
  241. REAL C, EPS, S, T, TAU, TOL
  242. * ..
  243. * .. External Functions ..
  244. INTEGER ISAMAX
  245. REAL SLAMCH, SLAPY2
  246. EXTERNAL ISAMAX, SLAMCH, SLAPY2
  247. * ..
  248. * .. External Subroutines ..
  249. EXTERNAL SCOPY, SLACPY, SLAMRG, SROT, SSCAL, XERBLA
  250. * ..
  251. * .. Intrinsic Functions ..
  252. INTRINSIC ABS, MAX, MIN, SQRT
  253. * ..
  254. * .. Executable Statements ..
  255. *
  256. * Test the input parameters.
  257. *
  258. INFO = 0
  259. *
  260. IF( N.LT.0 ) THEN
  261. INFO = -2
  262. ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  263. INFO = -6
  264. ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
  265. INFO = -3
  266. END IF
  267. IF( INFO.NE.0 ) THEN
  268. CALL XERBLA( 'SLAED2', -INFO )
  269. RETURN
  270. END IF
  271. *
  272. * Quick return if possible
  273. *
  274. IF( N.EQ.0 )
  275. $ RETURN
  276. *
  277. N2 = N - N1
  278. N1P1 = N1 + 1
  279. *
  280. IF( RHO.LT.ZERO ) THEN
  281. CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
  282. END IF
  283. *
  284. * Normalize z so that norm(z) = 1. Since z is the concatenation of
  285. * two normalized vectors, norm2(z) = sqrt(2).
  286. *
  287. T = ONE / SQRT( TWO )
  288. CALL SSCAL( N, T, Z, 1 )
  289. *
  290. * RHO = ABS( norm(z)**2 * RHO )
  291. *
  292. RHO = ABS( TWO*RHO )
  293. *
  294. * Sort the eigenvalues into increasing order
  295. *
  296. DO 10 I = N1P1, N
  297. INDXQ( I ) = INDXQ( I ) + N1
  298. 10 CONTINUE
  299. *
  300. * re-integrate the deflated parts from the last pass
  301. *
  302. DO 20 I = 1, N
  303. DLAMDA( I ) = D( INDXQ( I ) )
  304. 20 CONTINUE
  305. CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )
  306. DO 30 I = 1, N
  307. INDX( I ) = INDXQ( INDXC( I ) )
  308. 30 CONTINUE
  309. *
  310. * Calculate the allowable deflation tolerance
  311. *
  312. IMAX = ISAMAX( N, Z, 1 )
  313. JMAX = ISAMAX( N, D, 1 )
  314. EPS = SLAMCH( 'Epsilon' )
  315. TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
  316. *
  317. * If the rank-1 modifier is small enough, no more needs to be done
  318. * except to reorganize Q so that its columns correspond with the
  319. * elements in D.
  320. *
  321. IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
  322. K = 0
  323. IQ2 = 1
  324. DO 40 J = 1, N
  325. I = INDX( J )
  326. CALL SCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
  327. DLAMDA( J ) = D( I )
  328. IQ2 = IQ2 + N
  329. 40 CONTINUE
  330. CALL SLACPY( 'A', N, N, Q2, N, Q, LDQ )
  331. CALL SCOPY( N, DLAMDA, 1, D, 1 )
  332. GO TO 190
  333. END IF
  334. *
  335. * If there are multiple eigenvalues then the problem deflates. Here
  336. * the number of equal eigenvalues are found. As each equal
  337. * eigenvalue is found, an elementary reflector is computed to rotate
  338. * the corresponding eigensubspace so that the corresponding
  339. * components of Z are zero in this new basis.
  340. *
  341. DO 50 I = 1, N1
  342. COLTYP( I ) = 1
  343. 50 CONTINUE
  344. DO 60 I = N1P1, N
  345. COLTYP( I ) = 3
  346. 60 CONTINUE
  347. *
  348. *
  349. K = 0
  350. K2 = N + 1
  351. DO 70 J = 1, N
  352. NJ = INDX( J )
  353. IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
  354. *
  355. * Deflate due to small z component.
  356. *
  357. K2 = K2 - 1
  358. COLTYP( NJ ) = 4
  359. INDXP( K2 ) = NJ
  360. IF( J.EQ.N )
  361. $ GO TO 100
  362. ELSE
  363. PJ = NJ
  364. GO TO 80
  365. END IF
  366. 70 CONTINUE
  367. 80 CONTINUE
  368. J = J + 1
  369. NJ = INDX( J )
  370. IF( J.GT.N )
  371. $ GO TO 100
  372. IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
  373. *
  374. * Deflate due to small z component.
  375. *
  376. K2 = K2 - 1
  377. COLTYP( NJ ) = 4
  378. INDXP( K2 ) = NJ
  379. ELSE
  380. *
  381. * Check if eigenvalues are close enough to allow deflation.
  382. *
  383. S = Z( PJ )
  384. C = Z( NJ )
  385. *
  386. * Find sqrt(a**2+b**2) without overflow or
  387. * destructive underflow.
  388. *
  389. TAU = SLAPY2( C, S )
  390. T = D( NJ ) - D( PJ )
  391. C = C / TAU
  392. S = -S / TAU
  393. IF( ABS( T*C*S ).LE.TOL ) THEN
  394. *
  395. * Deflation is possible.
  396. *
  397. Z( NJ ) = TAU
  398. Z( PJ ) = ZERO
  399. IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
  400. $ COLTYP( NJ ) = 2
  401. COLTYP( PJ ) = 4
  402. CALL SROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
  403. T = D( PJ )*C**2 + D( NJ )*S**2
  404. D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
  405. D( PJ ) = T
  406. K2 = K2 - 1
  407. I = 1
  408. 90 CONTINUE
  409. IF( K2+I.LE.N ) THEN
  410. IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
  411. INDXP( K2+I-1 ) = INDXP( K2+I )
  412. INDXP( K2+I ) = PJ
  413. I = I + 1
  414. GO TO 90
  415. ELSE
  416. INDXP( K2+I-1 ) = PJ
  417. END IF
  418. ELSE
  419. INDXP( K2+I-1 ) = PJ
  420. END IF
  421. PJ = NJ
  422. ELSE
  423. K = K + 1
  424. DLAMDA( K ) = D( PJ )
  425. W( K ) = Z( PJ )
  426. INDXP( K ) = PJ
  427. PJ = NJ
  428. END IF
  429. END IF
  430. GO TO 80
  431. 100 CONTINUE
  432. *
  433. * Record the last eigenvalue.
  434. *
  435. K = K + 1
  436. DLAMDA( K ) = D( PJ )
  437. W( K ) = Z( PJ )
  438. INDXP( K ) = PJ
  439. *
  440. * Count up the total number of the various types of columns, then
  441. * form a permutation which positions the four column types into
  442. * four uniform groups (although one or more of these groups may be
  443. * empty).
  444. *
  445. DO 110 J = 1, 4
  446. CTOT( J ) = 0
  447. 110 CONTINUE
  448. DO 120 J = 1, N
  449. CT = COLTYP( J )
  450. CTOT( CT ) = CTOT( CT ) + 1
  451. 120 CONTINUE
  452. *
  453. * PSM(*) = Position in SubMatrix (of types 1 through 4)
  454. *
  455. PSM( 1 ) = 1
  456. PSM( 2 ) = 1 + CTOT( 1 )
  457. PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
  458. PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
  459. K = N - CTOT( 4 )
  460. *
  461. * Fill out the INDXC array so that the permutation which it induces
  462. * will place all type-1 columns first, all type-2 columns next,
  463. * then all type-3's, and finally all type-4's.
  464. *
  465. DO 130 J = 1, N
  466. JS = INDXP( J )
  467. CT = COLTYP( JS )
  468. INDX( PSM( CT ) ) = JS
  469. INDXC( PSM( CT ) ) = J
  470. PSM( CT ) = PSM( CT ) + 1
  471. 130 CONTINUE
  472. *
  473. * Sort the eigenvalues and corresponding eigenvectors into DLAMDA
  474. * and Q2 respectively. The eigenvalues/vectors which were not
  475. * deflated go into the first K slots of DLAMDA and Q2 respectively,
  476. * while those which were deflated go into the last N - K slots.
  477. *
  478. I = 1
  479. IQ1 = 1
  480. IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
  481. DO 140 J = 1, CTOT( 1 )
  482. JS = INDX( I )
  483. CALL SCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
  484. Z( I ) = D( JS )
  485. I = I + 1
  486. IQ1 = IQ1 + N1
  487. 140 CONTINUE
  488. *
  489. DO 150 J = 1, CTOT( 2 )
  490. JS = INDX( I )
  491. CALL SCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
  492. CALL SCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
  493. Z( I ) = D( JS )
  494. I = I + 1
  495. IQ1 = IQ1 + N1
  496. IQ2 = IQ2 + N2
  497. 150 CONTINUE
  498. *
  499. DO 160 J = 1, CTOT( 3 )
  500. JS = INDX( I )
  501. CALL SCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
  502. Z( I ) = D( JS )
  503. I = I + 1
  504. IQ2 = IQ2 + N2
  505. 160 CONTINUE
  506. *
  507. IQ1 = IQ2
  508. DO 170 J = 1, CTOT( 4 )
  509. JS = INDX( I )
  510. CALL SCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
  511. IQ2 = IQ2 + N
  512. Z( I ) = D( JS )
  513. I = I + 1
  514. 170 CONTINUE
  515. *
  516. * The deflated eigenvalues and their corresponding vectors go back
  517. * into the last N - K slots of D and Q respectively.
  518. *
  519. IF( K.LT.N ) THEN
  520. CALL SLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N,
  521. $ Q( 1, K+1 ), LDQ )
  522. CALL SCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
  523. END IF
  524. *
  525. * Copy CTOT into COLTYP for referencing in SLAED3.
  526. *
  527. DO 180 J = 1, 4
  528. COLTYP( J ) = CTOT( J )
  529. 180 CONTINUE
  530. *
  531. 190 CONTINUE
  532. RETURN
  533. *
  534. * End of SLAED2
  535. *
  536. END