You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggev3.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. *> \brief <b> SGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGGEV3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggev3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggev3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggev3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
  22. * $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
  23. * $ INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBVL, JOBVR
  27. * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  31. * $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
  32. * $ VR( LDVR, * ), WORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> SGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B)
  42. *> the generalized eigenvalues, and optionally, the left and/or right
  43. *> generalized eigenvectors.
  44. *>
  45. *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
  46. *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
  47. *> singular. It is usually represented as the pair (alpha,beta), as
  48. *> there is a reasonable interpretation for beta=0, and even for both
  49. *> being zero.
  50. *>
  51. *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
  52. *> of (A,B) satisfies
  53. *>
  54. *> A * v(j) = lambda(j) * B * v(j).
  55. *>
  56. *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
  57. *> of (A,B) satisfies
  58. *>
  59. *> u(j)**H * A = lambda(j) * u(j)**H * B .
  60. *>
  61. *> where u(j)**H is the conjugate-transpose of u(j).
  62. *>
  63. *> \endverbatim
  64. *
  65. * Arguments:
  66. * ==========
  67. *
  68. *> \param[in] JOBVL
  69. *> \verbatim
  70. *> JOBVL is CHARACTER*1
  71. *> = 'N': do not compute the left generalized eigenvectors;
  72. *> = 'V': compute the left generalized eigenvectors.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] JOBVR
  76. *> \verbatim
  77. *> JOBVR is CHARACTER*1
  78. *> = 'N': do not compute the right generalized eigenvectors;
  79. *> = 'V': compute the right generalized eigenvectors.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] N
  83. *> \verbatim
  84. *> N is INTEGER
  85. *> The order of the matrices A, B, VL, and VR. N >= 0.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] A
  89. *> \verbatim
  90. *> A is REAL array, dimension (LDA, N)
  91. *> On entry, the matrix A in the pair (A,B).
  92. *> On exit, A has been overwritten.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDA
  96. *> \verbatim
  97. *> LDA is INTEGER
  98. *> The leading dimension of A. LDA >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[in,out] B
  102. *> \verbatim
  103. *> B is REAL array, dimension (LDB, N)
  104. *> On entry, the matrix B in the pair (A,B).
  105. *> On exit, B has been overwritten.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDB
  109. *> \verbatim
  110. *> LDB is INTEGER
  111. *> The leading dimension of B. LDB >= max(1,N).
  112. *> \endverbatim
  113. *>
  114. *> \param[out] ALPHAR
  115. *> \verbatim
  116. *> ALPHAR is REAL array, dimension (N)
  117. *> \endverbatim
  118. *>
  119. *> \param[out] ALPHAI
  120. *> \verbatim
  121. *> ALPHAI is REAL array, dimension (N)
  122. *> \endverbatim
  123. *>
  124. *> \param[out] BETA
  125. *> \verbatim
  126. *> BETA is REAL array, dimension (N)
  127. *> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  128. *> be the generalized eigenvalues. If ALPHAI(j) is zero, then
  129. *> the j-th eigenvalue is real; if positive, then the j-th and
  130. *> (j+1)-st eigenvalues are a complex conjugate pair, with
  131. *> ALPHAI(j+1) negative.
  132. *>
  133. *> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
  134. *> may easily over- or underflow, and BETA(j) may even be zero.
  135. *> Thus, the user should avoid naively computing the ratio
  136. *> alpha/beta. However, ALPHAR and ALPHAI will be always less
  137. *> than and usually comparable with norm(A) in magnitude, and
  138. *> BETA always less than and usually comparable with norm(B).
  139. *> \endverbatim
  140. *>
  141. *> \param[out] VL
  142. *> \verbatim
  143. *> VL is REAL array, dimension (LDVL,N)
  144. *> If JOBVL = 'V', the left eigenvectors u(j) are stored one
  145. *> after another in the columns of VL, in the same order as
  146. *> their eigenvalues. If the j-th eigenvalue is real, then
  147. *> u(j) = VL(:,j), the j-th column of VL. If the j-th and
  148. *> (j+1)-th eigenvalues form a complex conjugate pair, then
  149. *> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
  150. *> Each eigenvector is scaled so the largest component has
  151. *> abs(real part)+abs(imag. part)=1.
  152. *> Not referenced if JOBVL = 'N'.
  153. *> \endverbatim
  154. *>
  155. *> \param[in] LDVL
  156. *> \verbatim
  157. *> LDVL is INTEGER
  158. *> The leading dimension of the matrix VL. LDVL >= 1, and
  159. *> if JOBVL = 'V', LDVL >= N.
  160. *> \endverbatim
  161. *>
  162. *> \param[out] VR
  163. *> \verbatim
  164. *> VR is REAL array, dimension (LDVR,N)
  165. *> If JOBVR = 'V', the right eigenvectors v(j) are stored one
  166. *> after another in the columns of VR, in the same order as
  167. *> their eigenvalues. If the j-th eigenvalue is real, then
  168. *> v(j) = VR(:,j), the j-th column of VR. If the j-th and
  169. *> (j+1)-th eigenvalues form a complex conjugate pair, then
  170. *> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
  171. *> Each eigenvector is scaled so the largest component has
  172. *> abs(real part)+abs(imag. part)=1.
  173. *> Not referenced if JOBVR = 'N'.
  174. *> \endverbatim
  175. *>
  176. *> \param[in] LDVR
  177. *> \verbatim
  178. *> LDVR is INTEGER
  179. *> The leading dimension of the matrix VR. LDVR >= 1, and
  180. *> if JOBVR = 'V', LDVR >= N.
  181. *> \endverbatim
  182. *>
  183. *> \param[out] WORK
  184. *> \verbatim
  185. *> WORK is REAL array, dimension (MAX(1,LWORK))
  186. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  187. *> \endverbatim
  188. *>
  189. *> \param[in] LWORK
  190. *> \verbatim
  191. *> LWORK is INTEGER
  192. *>
  193. *> If LWORK = -1, then a workspace query is assumed; the routine
  194. *> only calculates the optimal size of the WORK array, returns
  195. *> this value as the first entry of the WORK array, and no error
  196. *> message related to LWORK is issued by XERBLA.
  197. *> \endverbatim
  198. *>
  199. *> \param[out] INFO
  200. *> \verbatim
  201. *> INFO is INTEGER
  202. *> = 0: successful exit
  203. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  204. *> = 1,...,N:
  205. *> The QZ iteration failed. No eigenvectors have been
  206. *> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
  207. *> should be correct for j=INFO+1,...,N.
  208. *> > N: =N+1: other than QZ iteration failed in SLAQZ0.
  209. *> =N+2: error return from STGEVC.
  210. *> \endverbatim
  211. *
  212. * Authors:
  213. * ========
  214. *
  215. *> \author Univ. of Tennessee
  216. *> \author Univ. of California Berkeley
  217. *> \author Univ. of Colorado Denver
  218. *> \author NAG Ltd.
  219. *
  220. *> \ingroup realGEeigen
  221. *
  222. * =====================================================================
  223. SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
  224. $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
  225. $ INFO )
  226. *
  227. * -- LAPACK driver routine --
  228. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  229. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  230. *
  231. * .. Scalar Arguments ..
  232. CHARACTER JOBVL, JOBVR
  233. INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  234. * ..
  235. * .. Array Arguments ..
  236. REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  237. $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
  238. $ VR( LDVR, * ), WORK( * )
  239. * ..
  240. *
  241. * =====================================================================
  242. *
  243. * .. Parameters ..
  244. REAL ZERO, ONE
  245. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  246. * ..
  247. * .. Local Scalars ..
  248. LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
  249. CHARACTER CHTEMP
  250. INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
  251. $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, LWKOPT
  252. REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  253. $ SMLNUM, TEMP
  254. * ..
  255. * .. Local Arrays ..
  256. LOGICAL LDUMMA( 1 )
  257. * ..
  258. * .. External Subroutines ..
  259. EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHD3, SLAQZ0, SLABAD,
  260. $ SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGEVC,
  261. $ XERBLA
  262. * ..
  263. * .. External Functions ..
  264. LOGICAL LSAME
  265. REAL SLAMCH, SLANGE
  266. EXTERNAL LSAME, SLAMCH, SLANGE
  267. * ..
  268. * .. Intrinsic Functions ..
  269. INTRINSIC ABS, MAX, SQRT
  270. * ..
  271. * .. Executable Statements ..
  272. *
  273. * Decode the input arguments
  274. *
  275. IF( LSAME( JOBVL, 'N' ) ) THEN
  276. IJOBVL = 1
  277. ILVL = .FALSE.
  278. ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  279. IJOBVL = 2
  280. ILVL = .TRUE.
  281. ELSE
  282. IJOBVL = -1
  283. ILVL = .FALSE.
  284. END IF
  285. *
  286. IF( LSAME( JOBVR, 'N' ) ) THEN
  287. IJOBVR = 1
  288. ILVR = .FALSE.
  289. ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  290. IJOBVR = 2
  291. ILVR = .TRUE.
  292. ELSE
  293. IJOBVR = -1
  294. ILVR = .FALSE.
  295. END IF
  296. ILV = ILVL .OR. ILVR
  297. *
  298. * Test the input arguments
  299. *
  300. INFO = 0
  301. LQUERY = ( LWORK.EQ.-1 )
  302. IF( IJOBVL.LE.0 ) THEN
  303. INFO = -1
  304. ELSE IF( IJOBVR.LE.0 ) THEN
  305. INFO = -2
  306. ELSE IF( N.LT.0 ) THEN
  307. INFO = -3
  308. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  309. INFO = -5
  310. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  311. INFO = -7
  312. ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  313. INFO = -12
  314. ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  315. INFO = -14
  316. ELSE IF( LWORK.LT.MAX( 1, 8*N ) .AND. .NOT.LQUERY ) THEN
  317. INFO = -16
  318. END IF
  319. *
  320. * Compute workspace
  321. *
  322. IF( INFO.EQ.0 ) THEN
  323. CALL SGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
  324. LWKOPT = MAX( 1, 8*N, 3*N+INT ( WORK( 1 ) ) )
  325. CALL SORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK,
  326. $ -1, IERR )
  327. LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
  328. CALL SGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL, LDVL,
  329. $ VR, LDVR, WORK, -1, IERR )
  330. LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
  331. IF( ILVL ) THEN
  332. CALL SORGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR )
  333. LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
  334. CALL SLAQZ0( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
  335. $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
  336. $ WORK, -1, 0, IERR )
  337. LWKOPT = MAX( LWKOPT, 2*N+INT ( WORK( 1 ) ) )
  338. ELSE
  339. CALL SLAQZ0( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
  340. $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
  341. $ WORK, -1, 0, IERR )
  342. LWKOPT = MAX( LWKOPT, 2*N+INT ( WORK( 1 ) ) )
  343. END IF
  344. WORK( 1 ) = REAL( LWKOPT )
  345. *
  346. END IF
  347. *
  348. IF( INFO.NE.0 ) THEN
  349. CALL XERBLA( 'SGGEV3 ', -INFO )
  350. RETURN
  351. ELSE IF( LQUERY ) THEN
  352. RETURN
  353. END IF
  354. *
  355. * Quick return if possible
  356. *
  357. IF( N.EQ.0 )
  358. $ RETURN
  359. *
  360. * Get machine constants
  361. *
  362. EPS = SLAMCH( 'P' )
  363. SMLNUM = SLAMCH( 'S' )
  364. BIGNUM = ONE / SMLNUM
  365. CALL SLABAD( SMLNUM, BIGNUM )
  366. SMLNUM = SQRT( SMLNUM ) / EPS
  367. BIGNUM = ONE / SMLNUM
  368. *
  369. * Scale A if max element outside range [SMLNUM,BIGNUM]
  370. *
  371. ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
  372. ILASCL = .FALSE.
  373. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  374. ANRMTO = SMLNUM
  375. ILASCL = .TRUE.
  376. ELSE IF( ANRM.GT.BIGNUM ) THEN
  377. ANRMTO = BIGNUM
  378. ILASCL = .TRUE.
  379. END IF
  380. IF( ILASCL )
  381. $ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  382. *
  383. * Scale B if max element outside range [SMLNUM,BIGNUM]
  384. *
  385. BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
  386. ILBSCL = .FALSE.
  387. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  388. BNRMTO = SMLNUM
  389. ILBSCL = .TRUE.
  390. ELSE IF( BNRM.GT.BIGNUM ) THEN
  391. BNRMTO = BIGNUM
  392. ILBSCL = .TRUE.
  393. END IF
  394. IF( ILBSCL )
  395. $ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  396. *
  397. * Permute the matrices A, B to isolate eigenvalues if possible
  398. *
  399. ILEFT = 1
  400. IRIGHT = N + 1
  401. IWRK = IRIGHT + N
  402. CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
  403. $ WORK( IRIGHT ), WORK( IWRK ), IERR )
  404. *
  405. * Reduce B to triangular form (QR decomposition of B)
  406. *
  407. IROWS = IHI + 1 - ILO
  408. IF( ILV ) THEN
  409. ICOLS = N + 1 - ILO
  410. ELSE
  411. ICOLS = IROWS
  412. END IF
  413. ITAU = IWRK
  414. IWRK = ITAU + IROWS
  415. CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  416. $ WORK( IWRK ), LWORK+1-IWRK, IERR )
  417. *
  418. * Apply the orthogonal transformation to matrix A
  419. *
  420. CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  421. $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  422. $ LWORK+1-IWRK, IERR )
  423. *
  424. * Initialize VL
  425. *
  426. IF( ILVL ) THEN
  427. CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
  428. IF( IROWS.GT.1 ) THEN
  429. CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  430. $ VL( ILO+1, ILO ), LDVL )
  431. END IF
  432. CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  433. $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  434. END IF
  435. *
  436. * Initialize VR
  437. *
  438. IF( ILVR )
  439. $ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
  440. *
  441. * Reduce to generalized Hessenberg form
  442. *
  443. IF( ILV ) THEN
  444. *
  445. * Eigenvectors requested -- work on whole matrix.
  446. *
  447. CALL SGGHD3( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  448. $ LDVL, VR, LDVR, WORK( IWRK ), LWORK+1-IWRK, IERR )
  449. ELSE
  450. CALL SGGHD3( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  451. $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR,
  452. $ WORK( IWRK ), LWORK+1-IWRK, IERR )
  453. END IF
  454. *
  455. * Perform QZ algorithm (Compute eigenvalues, and optionally, the
  456. * Schur forms and Schur vectors)
  457. *
  458. IWRK = ITAU
  459. IF( ILV ) THEN
  460. CHTEMP = 'S'
  461. ELSE
  462. CHTEMP = 'E'
  463. END IF
  464. CALL SLAQZ0( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  465. $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
  466. $ WORK( IWRK ), LWORK+1-IWRK, 0, IERR )
  467. IF( IERR.NE.0 ) THEN
  468. IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  469. INFO = IERR
  470. ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  471. INFO = IERR - N
  472. ELSE
  473. INFO = N + 1
  474. END IF
  475. GO TO 110
  476. END IF
  477. *
  478. * Compute Eigenvectors
  479. *
  480. IF( ILV ) THEN
  481. IF( ILVL ) THEN
  482. IF( ILVR ) THEN
  483. CHTEMP = 'B'
  484. ELSE
  485. CHTEMP = 'L'
  486. END IF
  487. ELSE
  488. CHTEMP = 'R'
  489. END IF
  490. CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
  491. $ VR, LDVR, N, IN, WORK( IWRK ), IERR )
  492. IF( IERR.NE.0 ) THEN
  493. INFO = N + 2
  494. GO TO 110
  495. END IF
  496. *
  497. * Undo balancing on VL and VR and normalization
  498. *
  499. IF( ILVL ) THEN
  500. CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
  501. $ WORK( IRIGHT ), N, VL, LDVL, IERR )
  502. DO 50 JC = 1, N
  503. IF( ALPHAI( JC ).LT.ZERO )
  504. $ GO TO 50
  505. TEMP = ZERO
  506. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  507. DO 10 JR = 1, N
  508. TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
  509. 10 CONTINUE
  510. ELSE
  511. DO 20 JR = 1, N
  512. TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
  513. $ ABS( VL( JR, JC+1 ) ) )
  514. 20 CONTINUE
  515. END IF
  516. IF( TEMP.LT.SMLNUM )
  517. $ GO TO 50
  518. TEMP = ONE / TEMP
  519. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  520. DO 30 JR = 1, N
  521. VL( JR, JC ) = VL( JR, JC )*TEMP
  522. 30 CONTINUE
  523. ELSE
  524. DO 40 JR = 1, N
  525. VL( JR, JC ) = VL( JR, JC )*TEMP
  526. VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
  527. 40 CONTINUE
  528. END IF
  529. 50 CONTINUE
  530. END IF
  531. IF( ILVR ) THEN
  532. CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
  533. $ WORK( IRIGHT ), N, VR, LDVR, IERR )
  534. DO 100 JC = 1, N
  535. IF( ALPHAI( JC ).LT.ZERO )
  536. $ GO TO 100
  537. TEMP = ZERO
  538. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  539. DO 60 JR = 1, N
  540. TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
  541. 60 CONTINUE
  542. ELSE
  543. DO 70 JR = 1, N
  544. TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
  545. $ ABS( VR( JR, JC+1 ) ) )
  546. 70 CONTINUE
  547. END IF
  548. IF( TEMP.LT.SMLNUM )
  549. $ GO TO 100
  550. TEMP = ONE / TEMP
  551. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  552. DO 80 JR = 1, N
  553. VR( JR, JC ) = VR( JR, JC )*TEMP
  554. 80 CONTINUE
  555. ELSE
  556. DO 90 JR = 1, N
  557. VR( JR, JC ) = VR( JR, JC )*TEMP
  558. VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
  559. 90 CONTINUE
  560. END IF
  561. 100 CONTINUE
  562. END IF
  563. *
  564. * End of eigenvector calculation
  565. *
  566. END IF
  567. *
  568. * Undo scaling if necessary
  569. *
  570. 110 CONTINUE
  571. *
  572. IF( ILASCL ) THEN
  573. CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
  574. CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
  575. END IF
  576. *
  577. IF( ILBSCL ) THEN
  578. CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  579. END IF
  580. *
  581. WORK( 1 ) = REAL( LWKOPT )
  582. RETURN
  583. *
  584. * End of SGGEV3
  585. *
  586. END