You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsytf2.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. *> \brief \b DSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * DOUBLE PRECISION A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DSYTF2 computes the factorization of a real symmetric matrix A using
  39. *> the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**T or A = L*D*L**T
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, U**T is the transpose of U, and D is symmetric and
  45. *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the upper or lower triangular part of the
  57. *> symmetric matrix A is stored:
  58. *> = 'U': Upper triangular
  59. *> = 'L': Lower triangular
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  71. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  72. *> n-by-n upper triangular part of A contains the upper
  73. *> triangular part of the matrix A, and the strictly lower
  74. *> triangular part of A is not referenced. If UPLO = 'L', the
  75. *> leading n-by-n lower triangular part of A contains the lower
  76. *> triangular part of the matrix A, and the strictly upper
  77. *> triangular part of A is not referenced.
  78. *>
  79. *> On exit, the block diagonal matrix D and the multipliers used
  80. *> to obtain the factor U or L (see below for further details).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] IPIV
  90. *> \verbatim
  91. *> IPIV is INTEGER array, dimension (N)
  92. *> Details of the interchanges and the block structure of D.
  93. *>
  94. *> If UPLO = 'U':
  95. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  96. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  97. *>
  98. *> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  99. *> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  100. *> is a 2-by-2 diagonal block.
  101. *>
  102. *> If UPLO = 'L':
  103. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  104. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  105. *>
  106. *> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  107. *> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  108. *> is a 2-by-2 diagonal block.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] INFO
  112. *> \verbatim
  113. *> INFO is INTEGER
  114. *> = 0: successful exit
  115. *> < 0: if INFO = -k, the k-th argument had an illegal value
  116. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  117. *> has been completed, but the block diagonal matrix D is
  118. *> exactly singular, and division by zero will occur if it
  119. *> is used to solve a system of equations.
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \ingroup doubleSYcomputational
  131. *
  132. *> \par Further Details:
  133. * =====================
  134. *>
  135. *> \verbatim
  136. *>
  137. *> If UPLO = 'U', then A = U*D*U**T, where
  138. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  139. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  140. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  141. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  142. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  143. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  144. *>
  145. *> ( I v 0 ) k-s
  146. *> U(k) = ( 0 I 0 ) s
  147. *> ( 0 0 I ) n-k
  148. *> k-s s n-k
  149. *>
  150. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  151. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  152. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  153. *>
  154. *> If UPLO = 'L', then A = L*D*L**T, where
  155. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  156. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  157. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  158. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  159. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  160. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  161. *>
  162. *> ( I 0 0 ) k-1
  163. *> L(k) = ( 0 I 0 ) s
  164. *> ( 0 v I ) n-k-s+1
  165. *> k-1 s n-k-s+1
  166. *>
  167. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  168. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  169. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  170. *> \endverbatim
  171. *
  172. *> \par Contributors:
  173. * ==================
  174. *>
  175. *> \verbatim
  176. *>
  177. *> 09-29-06 - patch from
  178. *> Bobby Cheng, MathWorks
  179. *>
  180. *> Replace l.204 and l.372
  181. *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  182. *> by
  183. *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  184. *>
  185. *> 01-01-96 - Based on modifications by
  186. *> J. Lewis, Boeing Computer Services Company
  187. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  188. *> 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
  189. *> Company
  190. *> \endverbatim
  191. *
  192. * =====================================================================
  193. SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  194. *
  195. * -- LAPACK computational routine --
  196. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  197. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198. *
  199. * .. Scalar Arguments ..
  200. CHARACTER UPLO
  201. INTEGER INFO, LDA, N
  202. * ..
  203. * .. Array Arguments ..
  204. INTEGER IPIV( * )
  205. DOUBLE PRECISION A( LDA, * )
  206. * ..
  207. *
  208. * =====================================================================
  209. *
  210. * .. Parameters ..
  211. DOUBLE PRECISION ZERO, ONE
  212. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  213. DOUBLE PRECISION EIGHT, SEVTEN
  214. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  215. * ..
  216. * .. Local Scalars ..
  217. LOGICAL UPPER
  218. INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
  219. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  220. $ ROWMAX, T, WK, WKM1, WKP1
  221. * ..
  222. * .. External Functions ..
  223. LOGICAL LSAME, DISNAN
  224. INTEGER IDAMAX
  225. EXTERNAL LSAME, IDAMAX, DISNAN
  226. * ..
  227. * .. External Subroutines ..
  228. EXTERNAL DSCAL, DSWAP, DSYR, XERBLA
  229. * ..
  230. * .. Intrinsic Functions ..
  231. INTRINSIC ABS, MAX, SQRT
  232. * ..
  233. * .. Executable Statements ..
  234. *
  235. * Test the input parameters.
  236. *
  237. INFO = 0
  238. UPPER = LSAME( UPLO, 'U' )
  239. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  240. INFO = -1
  241. ELSE IF( N.LT.0 ) THEN
  242. INFO = -2
  243. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  244. INFO = -4
  245. END IF
  246. IF( INFO.NE.0 ) THEN
  247. CALL XERBLA( 'DSYTF2', -INFO )
  248. RETURN
  249. END IF
  250. *
  251. * Initialize ALPHA for use in choosing pivot block size.
  252. *
  253. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  254. *
  255. IF( UPPER ) THEN
  256. *
  257. * Factorize A as U*D*U**T using the upper triangle of A
  258. *
  259. * K is the main loop index, decreasing from N to 1 in steps of
  260. * 1 or 2
  261. *
  262. K = N
  263. 10 CONTINUE
  264. *
  265. * If K < 1, exit from loop
  266. *
  267. IF( K.LT.1 )
  268. $ GO TO 70
  269. KSTEP = 1
  270. *
  271. * Determine rows and columns to be interchanged and whether
  272. * a 1-by-1 or 2-by-2 pivot block will be used
  273. *
  274. ABSAKK = ABS( A( K, K ) )
  275. *
  276. * IMAX is the row-index of the largest off-diagonal element in
  277. * column K, and COLMAX is its absolute value.
  278. * Determine both COLMAX and IMAX.
  279. *
  280. IF( K.GT.1 ) THEN
  281. IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  282. COLMAX = ABS( A( IMAX, K ) )
  283. ELSE
  284. COLMAX = ZERO
  285. END IF
  286. *
  287. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  288. *
  289. * Column K is zero or underflow, or contains a NaN:
  290. * set INFO and continue
  291. *
  292. IF( INFO.EQ.0 )
  293. $ INFO = K
  294. KP = K
  295. ELSE
  296. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  297. *
  298. * no interchange, use 1-by-1 pivot block
  299. *
  300. KP = K
  301. ELSE
  302. *
  303. * JMAX is the column-index of the largest off-diagonal
  304. * element in row IMAX, and ROWMAX is its absolute value
  305. *
  306. JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  307. ROWMAX = ABS( A( IMAX, JMAX ) )
  308. IF( IMAX.GT.1 ) THEN
  309. JMAX = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  310. ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  311. END IF
  312. *
  313. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  314. *
  315. * no interchange, use 1-by-1 pivot block
  316. *
  317. KP = K
  318. ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  319. *
  320. * interchange rows and columns K and IMAX, use 1-by-1
  321. * pivot block
  322. *
  323. KP = IMAX
  324. ELSE
  325. *
  326. * interchange rows and columns K-1 and IMAX, use 2-by-2
  327. * pivot block
  328. *
  329. KP = IMAX
  330. KSTEP = 2
  331. END IF
  332. END IF
  333. *
  334. KK = K - KSTEP + 1
  335. IF( KP.NE.KK ) THEN
  336. *
  337. * Interchange rows and columns KK and KP in the leading
  338. * submatrix A(1:k,1:k)
  339. *
  340. CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  341. CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  342. $ LDA )
  343. T = A( KK, KK )
  344. A( KK, KK ) = A( KP, KP )
  345. A( KP, KP ) = T
  346. IF( KSTEP.EQ.2 ) THEN
  347. T = A( K-1, K )
  348. A( K-1, K ) = A( KP, K )
  349. A( KP, K ) = T
  350. END IF
  351. END IF
  352. *
  353. * Update the leading submatrix
  354. *
  355. IF( KSTEP.EQ.1 ) THEN
  356. *
  357. * 1-by-1 pivot block D(k): column k now holds
  358. *
  359. * W(k) = U(k)*D(k)
  360. *
  361. * where U(k) is the k-th column of U
  362. *
  363. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  364. *
  365. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  366. *
  367. R1 = ONE / A( K, K )
  368. CALL DSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  369. *
  370. * Store U(k) in column k
  371. *
  372. CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  373. ELSE
  374. *
  375. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  376. *
  377. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  378. *
  379. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  380. * of U
  381. *
  382. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  383. *
  384. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  385. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  386. *
  387. IF( K.GT.2 ) THEN
  388. *
  389. D12 = A( K-1, K )
  390. D22 = A( K-1, K-1 ) / D12
  391. D11 = A( K, K ) / D12
  392. T = ONE / ( D11*D22-ONE )
  393. D12 = T / D12
  394. *
  395. DO 30 J = K - 2, 1, -1
  396. WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  397. WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  398. DO 20 I = J, 1, -1
  399. A( I, J ) = A( I, J ) - A( I, K )*WK -
  400. $ A( I, K-1 )*WKM1
  401. 20 CONTINUE
  402. A( J, K ) = WK
  403. A( J, K-1 ) = WKM1
  404. 30 CONTINUE
  405. *
  406. END IF
  407. *
  408. END IF
  409. END IF
  410. *
  411. * Store details of the interchanges in IPIV
  412. *
  413. IF( KSTEP.EQ.1 ) THEN
  414. IPIV( K ) = KP
  415. ELSE
  416. IPIV( K ) = -KP
  417. IPIV( K-1 ) = -KP
  418. END IF
  419. *
  420. * Decrease K and return to the start of the main loop
  421. *
  422. K = K - KSTEP
  423. GO TO 10
  424. *
  425. ELSE
  426. *
  427. * Factorize A as L*D*L**T using the lower triangle of A
  428. *
  429. * K is the main loop index, increasing from 1 to N in steps of
  430. * 1 or 2
  431. *
  432. K = 1
  433. 40 CONTINUE
  434. *
  435. * If K > N, exit from loop
  436. *
  437. IF( K.GT.N )
  438. $ GO TO 70
  439. KSTEP = 1
  440. *
  441. * Determine rows and columns to be interchanged and whether
  442. * a 1-by-1 or 2-by-2 pivot block will be used
  443. *
  444. ABSAKK = ABS( A( K, K ) )
  445. *
  446. * IMAX is the row-index of the largest off-diagonal element in
  447. * column K, and COLMAX is its absolute value.
  448. * Determine both COLMAX and IMAX.
  449. *
  450. IF( K.LT.N ) THEN
  451. IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  452. COLMAX = ABS( A( IMAX, K ) )
  453. ELSE
  454. COLMAX = ZERO
  455. END IF
  456. *
  457. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  458. *
  459. * Column K is zero or underflow, or contains a NaN:
  460. * set INFO and continue
  461. *
  462. IF( INFO.EQ.0 )
  463. $ INFO = K
  464. KP = K
  465. ELSE
  466. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  467. *
  468. * no interchange, use 1-by-1 pivot block
  469. *
  470. KP = K
  471. ELSE
  472. *
  473. * JMAX is the column-index of the largest off-diagonal
  474. * element in row IMAX, and ROWMAX is its absolute value
  475. *
  476. JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  477. ROWMAX = ABS( A( IMAX, JMAX ) )
  478. IF( IMAX.LT.N ) THEN
  479. JMAX = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  480. ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  481. END IF
  482. *
  483. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  484. *
  485. * no interchange, use 1-by-1 pivot block
  486. *
  487. KP = K
  488. ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  489. *
  490. * interchange rows and columns K and IMAX, use 1-by-1
  491. * pivot block
  492. *
  493. KP = IMAX
  494. ELSE
  495. *
  496. * interchange rows and columns K+1 and IMAX, use 2-by-2
  497. * pivot block
  498. *
  499. KP = IMAX
  500. KSTEP = 2
  501. END IF
  502. END IF
  503. *
  504. KK = K + KSTEP - 1
  505. IF( KP.NE.KK ) THEN
  506. *
  507. * Interchange rows and columns KK and KP in the trailing
  508. * submatrix A(k:n,k:n)
  509. *
  510. IF( KP.LT.N )
  511. $ CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  512. CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  513. $ LDA )
  514. T = A( KK, KK )
  515. A( KK, KK ) = A( KP, KP )
  516. A( KP, KP ) = T
  517. IF( KSTEP.EQ.2 ) THEN
  518. T = A( K+1, K )
  519. A( K+1, K ) = A( KP, K )
  520. A( KP, K ) = T
  521. END IF
  522. END IF
  523. *
  524. * Update the trailing submatrix
  525. *
  526. IF( KSTEP.EQ.1 ) THEN
  527. *
  528. * 1-by-1 pivot block D(k): column k now holds
  529. *
  530. * W(k) = L(k)*D(k)
  531. *
  532. * where L(k) is the k-th column of L
  533. *
  534. IF( K.LT.N ) THEN
  535. *
  536. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  537. *
  538. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  539. *
  540. D11 = ONE / A( K, K )
  541. CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  542. $ A( K+1, K+1 ), LDA )
  543. *
  544. * Store L(k) in column K
  545. *
  546. CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  547. END IF
  548. ELSE
  549. *
  550. * 2-by-2 pivot block D(k)
  551. *
  552. IF( K.LT.N-1 ) THEN
  553. *
  554. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  555. *
  556. * A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))**T
  557. *
  558. * where L(k) and L(k+1) are the k-th and (k+1)-th
  559. * columns of L
  560. *
  561. D21 = A( K+1, K )
  562. D11 = A( K+1, K+1 ) / D21
  563. D22 = A( K, K ) / D21
  564. T = ONE / ( D11*D22-ONE )
  565. D21 = T / D21
  566. *
  567. DO 60 J = K + 2, N
  568. *
  569. WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  570. WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  571. *
  572. DO 50 I = J, N
  573. A( I, J ) = A( I, J ) - A( I, K )*WK -
  574. $ A( I, K+1 )*WKP1
  575. 50 CONTINUE
  576. *
  577. A( J, K ) = WK
  578. A( J, K+1 ) = WKP1
  579. *
  580. 60 CONTINUE
  581. END IF
  582. END IF
  583. END IF
  584. *
  585. * Store details of the interchanges in IPIV
  586. *
  587. IF( KSTEP.EQ.1 ) THEN
  588. IPIV( K ) = KP
  589. ELSE
  590. IPIV( K ) = -KP
  591. IPIV( K+1 ) = -KP
  592. END IF
  593. *
  594. * Increase K and return to the start of the main loop
  595. *
  596. K = K + KSTEP
  597. GO TO 40
  598. *
  599. END IF
  600. *
  601. 70 CONTINUE
  602. *
  603. RETURN
  604. *
  605. * End of DSYTF2
  606. *
  607. END