You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsyev.f 8.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. *> \brief <b> DSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYEV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyev.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyev.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyev.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER JOBZ, UPLO
  25. * INTEGER INFO, LDA, LWORK, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DSYEV computes all eigenvalues and, optionally, eigenvectors of a
  38. *> real symmetric matrix A.
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] JOBZ
  45. *> \verbatim
  46. *> JOBZ is CHARACTER*1
  47. *> = 'N': Compute eigenvalues only;
  48. *> = 'V': Compute eigenvalues and eigenvectors.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  67. *> On entry, the symmetric matrix A. If UPLO = 'U', the
  68. *> leading N-by-N upper triangular part of A contains the
  69. *> upper triangular part of the matrix A. If UPLO = 'L',
  70. *> the leading N-by-N lower triangular part of A contains
  71. *> the lower triangular part of the matrix A.
  72. *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
  73. *> orthonormal eigenvectors of the matrix A.
  74. *> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
  75. *> or the upper triangle (if UPLO='U') of A, including the
  76. *> diagonal, is destroyed.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] LDA
  80. *> \verbatim
  81. *> LDA is INTEGER
  82. *> The leading dimension of the array A. LDA >= max(1,N).
  83. *> \endverbatim
  84. *>
  85. *> \param[out] W
  86. *> \verbatim
  87. *> W is DOUBLE PRECISION array, dimension (N)
  88. *> If INFO = 0, the eigenvalues in ascending order.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] WORK
  92. *> \verbatim
  93. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  94. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LWORK
  98. *> \verbatim
  99. *> LWORK is INTEGER
  100. *> The length of the array WORK. LWORK >= max(1,3*N-1).
  101. *> For optimal efficiency, LWORK >= (NB+2)*N,
  102. *> where NB is the blocksize for DSYTRD returned by ILAENV.
  103. *>
  104. *> If LWORK = -1, then a workspace query is assumed; the routine
  105. *> only calculates the optimal size of the WORK array, returns
  106. *> this value as the first entry of the WORK array, and no error
  107. *> message related to LWORK is issued by XERBLA.
  108. *> \endverbatim
  109. *>
  110. *> \param[out] INFO
  111. *> \verbatim
  112. *> INFO is INTEGER
  113. *> = 0: successful exit
  114. *> < 0: if INFO = -i, the i-th argument had an illegal value
  115. *> > 0: if INFO = i, the algorithm failed to converge; i
  116. *> off-diagonal elements of an intermediate tridiagonal
  117. *> form did not converge to zero.
  118. *> \endverbatim
  119. *
  120. * Authors:
  121. * ========
  122. *
  123. *> \author Univ. of Tennessee
  124. *> \author Univ. of California Berkeley
  125. *> \author Univ. of Colorado Denver
  126. *> \author NAG Ltd.
  127. *
  128. *> \ingroup doubleSYeigen
  129. *
  130. * =====================================================================
  131. SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
  132. *
  133. * -- LAPACK driver routine --
  134. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  135. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136. *
  137. * .. Scalar Arguments ..
  138. CHARACTER JOBZ, UPLO
  139. INTEGER INFO, LDA, LWORK, N
  140. * ..
  141. * .. Array Arguments ..
  142. DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
  143. * ..
  144. *
  145. * =====================================================================
  146. *
  147. * .. Parameters ..
  148. DOUBLE PRECISION ZERO, ONE
  149. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  150. * ..
  151. * .. Local Scalars ..
  152. LOGICAL LOWER, LQUERY, WANTZ
  153. INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
  154. $ LLWORK, LWKOPT, NB
  155. DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  156. $ SMLNUM
  157. * ..
  158. * .. External Functions ..
  159. LOGICAL LSAME
  160. INTEGER ILAENV
  161. DOUBLE PRECISION DLAMCH, DLANSY
  162. EXTERNAL LSAME, ILAENV, DLAMCH, DLANSY
  163. * ..
  164. * .. External Subroutines ..
  165. EXTERNAL DLASCL, DORGTR, DSCAL, DSTEQR, DSTERF, DSYTRD,
  166. $ XERBLA
  167. * ..
  168. * .. Intrinsic Functions ..
  169. INTRINSIC MAX, SQRT
  170. * ..
  171. * .. Executable Statements ..
  172. *
  173. * Test the input parameters.
  174. *
  175. WANTZ = LSAME( JOBZ, 'V' )
  176. LOWER = LSAME( UPLO, 'L' )
  177. LQUERY = ( LWORK.EQ.-1 )
  178. *
  179. INFO = 0
  180. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  181. INFO = -1
  182. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  183. INFO = -2
  184. ELSE IF( N.LT.0 ) THEN
  185. INFO = -3
  186. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  187. INFO = -5
  188. END IF
  189. *
  190. IF( INFO.EQ.0 ) THEN
  191. NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
  192. LWKOPT = MAX( 1, ( NB+2 )*N )
  193. WORK( 1 ) = LWKOPT
  194. *
  195. IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY )
  196. $ INFO = -8
  197. END IF
  198. *
  199. IF( INFO.NE.0 ) THEN
  200. CALL XERBLA( 'DSYEV ', -INFO )
  201. RETURN
  202. ELSE IF( LQUERY ) THEN
  203. RETURN
  204. END IF
  205. *
  206. * Quick return if possible
  207. *
  208. IF( N.EQ.0 ) THEN
  209. RETURN
  210. END IF
  211. *
  212. IF( N.EQ.1 ) THEN
  213. W( 1 ) = A( 1, 1 )
  214. WORK( 1 ) = 2
  215. IF( WANTZ )
  216. $ A( 1, 1 ) = ONE
  217. RETURN
  218. END IF
  219. *
  220. * Get machine constants.
  221. *
  222. SAFMIN = DLAMCH( 'Safe minimum' )
  223. EPS = DLAMCH( 'Precision' )
  224. SMLNUM = SAFMIN / EPS
  225. BIGNUM = ONE / SMLNUM
  226. RMIN = SQRT( SMLNUM )
  227. RMAX = SQRT( BIGNUM )
  228. *
  229. * Scale matrix to allowable range, if necessary.
  230. *
  231. ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
  232. ISCALE = 0
  233. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  234. ISCALE = 1
  235. SIGMA = RMIN / ANRM
  236. ELSE IF( ANRM.GT.RMAX ) THEN
  237. ISCALE = 1
  238. SIGMA = RMAX / ANRM
  239. END IF
  240. IF( ISCALE.EQ.1 )
  241. $ CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
  242. *
  243. * Call DSYTRD to reduce symmetric matrix to tridiagonal form.
  244. *
  245. INDE = 1
  246. INDTAU = INDE + N
  247. INDWRK = INDTAU + N
  248. LLWORK = LWORK - INDWRK + 1
  249. CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
  250. $ WORK( INDWRK ), LLWORK, IINFO )
  251. *
  252. * For eigenvalues only, call DSTERF. For eigenvectors, first call
  253. * DORGTR to generate the orthogonal matrix, then call DSTEQR.
  254. *
  255. IF( .NOT.WANTZ ) THEN
  256. CALL DSTERF( N, W, WORK( INDE ), INFO )
  257. ELSE
  258. CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
  259. $ LLWORK, IINFO )
  260. CALL DSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
  261. $ INFO )
  262. END IF
  263. *
  264. * If matrix was scaled, then rescale eigenvalues appropriately.
  265. *
  266. IF( ISCALE.EQ.1 ) THEN
  267. IF( INFO.EQ.0 ) THEN
  268. IMAX = N
  269. ELSE
  270. IMAX = INFO - 1
  271. END IF
  272. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  273. END IF
  274. *
  275. * Set WORK(1) to optimal workspace size.
  276. *
  277. WORK( 1 ) = LWKOPT
  278. *
  279. RETURN
  280. *
  281. * End of DSYEV
  282. *
  283. END