You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsterf.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. *> \brief \b DSTERF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSTERF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsterf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsterf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsterf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSTERF( N, D, E, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, N
  25. * ..
  26. * .. Array Arguments ..
  27. * DOUBLE PRECISION D( * ), E( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
  37. *> using the Pal-Walker-Kahan variant of the QL or QR algorithm.
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] N
  44. *> \verbatim
  45. *> N is INTEGER
  46. *> The order of the matrix. N >= 0.
  47. *> \endverbatim
  48. *>
  49. *> \param[in,out] D
  50. *> \verbatim
  51. *> D is DOUBLE PRECISION array, dimension (N)
  52. *> On entry, the n diagonal elements of the tridiagonal matrix.
  53. *> On exit, if INFO = 0, the eigenvalues in ascending order.
  54. *> \endverbatim
  55. *>
  56. *> \param[in,out] E
  57. *> \verbatim
  58. *> E is DOUBLE PRECISION array, dimension (N-1)
  59. *> On entry, the (n-1) subdiagonal elements of the tridiagonal
  60. *> matrix.
  61. *> On exit, E has been destroyed.
  62. *> \endverbatim
  63. *>
  64. *> \param[out] INFO
  65. *> \verbatim
  66. *> INFO is INTEGER
  67. *> = 0: successful exit
  68. *> < 0: if INFO = -i, the i-th argument had an illegal value
  69. *> > 0: the algorithm failed to find all of the eigenvalues in
  70. *> a total of 30*N iterations; if INFO = i, then i
  71. *> elements of E have not converged to zero.
  72. *> \endverbatim
  73. *
  74. * Authors:
  75. * ========
  76. *
  77. *> \author Univ. of Tennessee
  78. *> \author Univ. of California Berkeley
  79. *> \author Univ. of Colorado Denver
  80. *> \author NAG Ltd.
  81. *
  82. *> \ingroup auxOTHERcomputational
  83. *
  84. * =====================================================================
  85. SUBROUTINE DSTERF( N, D, E, INFO )
  86. *
  87. * -- LAPACK computational routine --
  88. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  89. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  90. *
  91. * .. Scalar Arguments ..
  92. INTEGER INFO, N
  93. * ..
  94. * .. Array Arguments ..
  95. DOUBLE PRECISION D( * ), E( * )
  96. * ..
  97. *
  98. * =====================================================================
  99. *
  100. * .. Parameters ..
  101. DOUBLE PRECISION ZERO, ONE, TWO, THREE
  102. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  103. $ THREE = 3.0D0 )
  104. INTEGER MAXIT
  105. PARAMETER ( MAXIT = 30 )
  106. * ..
  107. * .. Local Scalars ..
  108. INTEGER I, ISCALE, JTOT, L, L1, LEND, LENDSV, LSV, M,
  109. $ NMAXIT
  110. DOUBLE PRECISION ALPHA, ANORM, BB, C, EPS, EPS2, GAMMA, OLDC,
  111. $ OLDGAM, P, R, RT1, RT2, RTE, S, SAFMAX, SAFMIN,
  112. $ SIGMA, SSFMAX, SSFMIN, RMAX
  113. * ..
  114. * .. External Functions ..
  115. DOUBLE PRECISION DLAMCH, DLANST, DLAPY2
  116. EXTERNAL DLAMCH, DLANST, DLAPY2
  117. * ..
  118. * .. External Subroutines ..
  119. EXTERNAL DLAE2, DLASCL, DLASRT, XERBLA
  120. * ..
  121. * .. Intrinsic Functions ..
  122. INTRINSIC ABS, SIGN, SQRT
  123. * ..
  124. * .. Executable Statements ..
  125. *
  126. * Test the input parameters.
  127. *
  128. INFO = 0
  129. *
  130. * Quick return if possible
  131. *
  132. IF( N.LT.0 ) THEN
  133. INFO = -1
  134. CALL XERBLA( 'DSTERF', -INFO )
  135. RETURN
  136. END IF
  137. IF( N.LE.1 )
  138. $ RETURN
  139. *
  140. * Determine the unit roundoff for this environment.
  141. *
  142. EPS = DLAMCH( 'E' )
  143. EPS2 = EPS**2
  144. SAFMIN = DLAMCH( 'S' )
  145. SAFMAX = ONE / SAFMIN
  146. SSFMAX = SQRT( SAFMAX ) / THREE
  147. SSFMIN = SQRT( SAFMIN ) / EPS2
  148. RMAX = DLAMCH( 'O' )
  149. *
  150. * Compute the eigenvalues of the tridiagonal matrix.
  151. *
  152. NMAXIT = N*MAXIT
  153. SIGMA = ZERO
  154. JTOT = 0
  155. *
  156. * Determine where the matrix splits and choose QL or QR iteration
  157. * for each block, according to whether top or bottom diagonal
  158. * element is smaller.
  159. *
  160. L1 = 1
  161. *
  162. 10 CONTINUE
  163. IF( L1.GT.N )
  164. $ GO TO 170
  165. IF( L1.GT.1 )
  166. $ E( L1-1 ) = ZERO
  167. DO 20 M = L1, N - 1
  168. IF( ABS( E( M ) ).LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
  169. $ 1 ) ) ) )*EPS ) THEN
  170. E( M ) = ZERO
  171. GO TO 30
  172. END IF
  173. 20 CONTINUE
  174. M = N
  175. *
  176. 30 CONTINUE
  177. L = L1
  178. LSV = L
  179. LEND = M
  180. LENDSV = LEND
  181. L1 = M + 1
  182. IF( LEND.EQ.L )
  183. $ GO TO 10
  184. *
  185. * Scale submatrix in rows and columns L to LEND
  186. *
  187. ANORM = DLANST( 'M', LEND-L+1, D( L ), E( L ) )
  188. ISCALE = 0
  189. IF( ANORM.EQ.ZERO )
  190. $ GO TO 10
  191. IF( (ANORM.GT.SSFMAX) ) THEN
  192. ISCALE = 1
  193. CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
  194. $ INFO )
  195. CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
  196. $ INFO )
  197. ELSE IF( ANORM.LT.SSFMIN ) THEN
  198. ISCALE = 2
  199. CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
  200. $ INFO )
  201. CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
  202. $ INFO )
  203. END IF
  204. *
  205. DO 40 I = L, LEND - 1
  206. E( I ) = E( I )**2
  207. 40 CONTINUE
  208. *
  209. * Choose between QL and QR iteration
  210. *
  211. IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
  212. LEND = LSV
  213. L = LENDSV
  214. END IF
  215. *
  216. IF( LEND.GE.L ) THEN
  217. *
  218. * QL Iteration
  219. *
  220. * Look for small subdiagonal element.
  221. *
  222. 50 CONTINUE
  223. IF( L.NE.LEND ) THEN
  224. DO 60 M = L, LEND - 1
  225. IF( ABS( E( M ) ).LE.EPS2*ABS( D( M )*D( M+1 ) ) )
  226. $ GO TO 70
  227. 60 CONTINUE
  228. END IF
  229. M = LEND
  230. *
  231. 70 CONTINUE
  232. IF( M.LT.LEND )
  233. $ E( M ) = ZERO
  234. P = D( L )
  235. IF( M.EQ.L )
  236. $ GO TO 90
  237. *
  238. * If remaining matrix is 2 by 2, use DLAE2 to compute its
  239. * eigenvalues.
  240. *
  241. IF( M.EQ.L+1 ) THEN
  242. RTE = SQRT( E( L ) )
  243. CALL DLAE2( D( L ), RTE, D( L+1 ), RT1, RT2 )
  244. D( L ) = RT1
  245. D( L+1 ) = RT2
  246. E( L ) = ZERO
  247. L = L + 2
  248. IF( L.LE.LEND )
  249. $ GO TO 50
  250. GO TO 150
  251. END IF
  252. *
  253. IF( JTOT.EQ.NMAXIT )
  254. $ GO TO 150
  255. JTOT = JTOT + 1
  256. *
  257. * Form shift.
  258. *
  259. RTE = SQRT( E( L ) )
  260. SIGMA = ( D( L+1 )-P ) / ( TWO*RTE )
  261. R = DLAPY2( SIGMA, ONE )
  262. SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
  263. *
  264. C = ONE
  265. S = ZERO
  266. GAMMA = D( M ) - SIGMA
  267. P = GAMMA*GAMMA
  268. *
  269. * Inner loop
  270. *
  271. DO 80 I = M - 1, L, -1
  272. BB = E( I )
  273. R = P + BB
  274. IF( I.NE.M-1 )
  275. $ E( I+1 ) = S*R
  276. OLDC = C
  277. C = P / R
  278. S = BB / R
  279. OLDGAM = GAMMA
  280. ALPHA = D( I )
  281. GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
  282. D( I+1 ) = OLDGAM + ( ALPHA-GAMMA )
  283. IF( C.NE.ZERO ) THEN
  284. P = ( GAMMA*GAMMA ) / C
  285. ELSE
  286. P = OLDC*BB
  287. END IF
  288. 80 CONTINUE
  289. *
  290. E( L ) = S*P
  291. D( L ) = SIGMA + GAMMA
  292. GO TO 50
  293. *
  294. * Eigenvalue found.
  295. *
  296. 90 CONTINUE
  297. D( L ) = P
  298. *
  299. L = L + 1
  300. IF( L.LE.LEND )
  301. $ GO TO 50
  302. GO TO 150
  303. *
  304. ELSE
  305. *
  306. * QR Iteration
  307. *
  308. * Look for small superdiagonal element.
  309. *
  310. 100 CONTINUE
  311. DO 110 M = L, LEND + 1, -1
  312. IF( ABS( E( M-1 ) ).LE.EPS2*ABS( D( M )*D( M-1 ) ) )
  313. $ GO TO 120
  314. 110 CONTINUE
  315. M = LEND
  316. *
  317. 120 CONTINUE
  318. IF( M.GT.LEND )
  319. $ E( M-1 ) = ZERO
  320. P = D( L )
  321. IF( M.EQ.L )
  322. $ GO TO 140
  323. *
  324. * If remaining matrix is 2 by 2, use DLAE2 to compute its
  325. * eigenvalues.
  326. *
  327. IF( M.EQ.L-1 ) THEN
  328. RTE = SQRT( E( L-1 ) )
  329. CALL DLAE2( D( L ), RTE, D( L-1 ), RT1, RT2 )
  330. D( L ) = RT1
  331. D( L-1 ) = RT2
  332. E( L-1 ) = ZERO
  333. L = L - 2
  334. IF( L.GE.LEND )
  335. $ GO TO 100
  336. GO TO 150
  337. END IF
  338. *
  339. IF( JTOT.EQ.NMAXIT )
  340. $ GO TO 150
  341. JTOT = JTOT + 1
  342. *
  343. * Form shift.
  344. *
  345. RTE = SQRT( E( L-1 ) )
  346. SIGMA = ( D( L-1 )-P ) / ( TWO*RTE )
  347. R = DLAPY2( SIGMA, ONE )
  348. SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
  349. *
  350. C = ONE
  351. S = ZERO
  352. GAMMA = D( M ) - SIGMA
  353. P = GAMMA*GAMMA
  354. *
  355. * Inner loop
  356. *
  357. DO 130 I = M, L - 1
  358. BB = E( I )
  359. R = P + BB
  360. IF( I.NE.M )
  361. $ E( I-1 ) = S*R
  362. OLDC = C
  363. C = P / R
  364. S = BB / R
  365. OLDGAM = GAMMA
  366. ALPHA = D( I+1 )
  367. GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
  368. D( I ) = OLDGAM + ( ALPHA-GAMMA )
  369. IF( C.NE.ZERO ) THEN
  370. P = ( GAMMA*GAMMA ) / C
  371. ELSE
  372. P = OLDC*BB
  373. END IF
  374. 130 CONTINUE
  375. *
  376. E( L-1 ) = S*P
  377. D( L ) = SIGMA + GAMMA
  378. GO TO 100
  379. *
  380. * Eigenvalue found.
  381. *
  382. 140 CONTINUE
  383. D( L ) = P
  384. *
  385. L = L - 1
  386. IF( L.GE.LEND )
  387. $ GO TO 100
  388. GO TO 150
  389. *
  390. END IF
  391. *
  392. * Undo scaling if necessary
  393. *
  394. 150 CONTINUE
  395. IF( ISCALE.EQ.1 )
  396. $ CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
  397. $ D( LSV ), N, INFO )
  398. IF( ISCALE.EQ.2 )
  399. $ CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
  400. $ D( LSV ), N, INFO )
  401. *
  402. * Check for no convergence to an eigenvalue after a total
  403. * of N*MAXIT iterations.
  404. *
  405. IF( JTOT.LT.NMAXIT )
  406. $ GO TO 10
  407. DO 160 I = 1, N - 1
  408. IF( E( I ).NE.ZERO )
  409. $ INFO = INFO + 1
  410. 160 CONTINUE
  411. GO TO 180
  412. *
  413. * Sort eigenvalues in increasing order.
  414. *
  415. 170 CONTINUE
  416. CALL DLASRT( 'I', N, D, INFO )
  417. *
  418. 180 CONTINUE
  419. RETURN
  420. *
  421. * End of DSTERF
  422. *
  423. END