You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsteqr.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. *> \brief \b DSTEQR
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSTEQR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsteqr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsteqr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsteqr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER COMPZ
  25. * INTEGER INFO, LDZ, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
  38. *> symmetric tridiagonal matrix using the implicit QL or QR method.
  39. *> The eigenvectors of a full or band symmetric matrix can also be found
  40. *> if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
  41. *> tridiagonal form.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] COMPZ
  48. *> \verbatim
  49. *> COMPZ is CHARACTER*1
  50. *> = 'N': Compute eigenvalues only.
  51. *> = 'V': Compute eigenvalues and eigenvectors of the original
  52. *> symmetric matrix. On entry, Z must contain the
  53. *> orthogonal matrix used to reduce the original matrix
  54. *> to tridiagonal form.
  55. *> = 'I': Compute eigenvalues and eigenvectors of the
  56. *> tridiagonal matrix. Z is initialized to the identity
  57. *> matrix.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The order of the matrix. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in,out] D
  67. *> \verbatim
  68. *> D is DOUBLE PRECISION array, dimension (N)
  69. *> On entry, the diagonal elements of the tridiagonal matrix.
  70. *> On exit, if INFO = 0, the eigenvalues in ascending order.
  71. *> \endverbatim
  72. *>
  73. *> \param[in,out] E
  74. *> \verbatim
  75. *> E is DOUBLE PRECISION array, dimension (N-1)
  76. *> On entry, the (n-1) subdiagonal elements of the tridiagonal
  77. *> matrix.
  78. *> On exit, E has been destroyed.
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] Z
  82. *> \verbatim
  83. *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
  84. *> On entry, if COMPZ = 'V', then Z contains the orthogonal
  85. *> matrix used in the reduction to tridiagonal form.
  86. *> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
  87. *> orthonormal eigenvectors of the original symmetric matrix,
  88. *> and if COMPZ = 'I', Z contains the orthonormal eigenvectors
  89. *> of the symmetric tridiagonal matrix.
  90. *> If COMPZ = 'N', then Z is not referenced.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDZ
  94. *> \verbatim
  95. *> LDZ is INTEGER
  96. *> The leading dimension of the array Z. LDZ >= 1, and if
  97. *> eigenvectors are desired, then LDZ >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[out] WORK
  101. *> \verbatim
  102. *> WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2))
  103. *> If COMPZ = 'N', then WORK is not referenced.
  104. *> \endverbatim
  105. *>
  106. *> \param[out] INFO
  107. *> \verbatim
  108. *> INFO is INTEGER
  109. *> = 0: successful exit
  110. *> < 0: if INFO = -i, the i-th argument had an illegal value
  111. *> > 0: the algorithm has failed to find all the eigenvalues in
  112. *> a total of 30*N iterations; if INFO = i, then i
  113. *> elements of E have not converged to zero; on exit, D
  114. *> and E contain the elements of a symmetric tridiagonal
  115. *> matrix which is orthogonally similar to the original
  116. *> matrix.
  117. *> \endverbatim
  118. *
  119. * Authors:
  120. * ========
  121. *
  122. *> \author Univ. of Tennessee
  123. *> \author Univ. of California Berkeley
  124. *> \author Univ. of Colorado Denver
  125. *> \author NAG Ltd.
  126. *
  127. *> \ingroup auxOTHERcomputational
  128. *
  129. * =====================================================================
  130. SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  131. *
  132. * -- LAPACK computational routine --
  133. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  134. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135. *
  136. * .. Scalar Arguments ..
  137. CHARACTER COMPZ
  138. INTEGER INFO, LDZ, N
  139. * ..
  140. * .. Array Arguments ..
  141. DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
  142. * ..
  143. *
  144. * =====================================================================
  145. *
  146. * .. Parameters ..
  147. DOUBLE PRECISION ZERO, ONE, TWO, THREE
  148. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  149. $ THREE = 3.0D0 )
  150. INTEGER MAXIT
  151. PARAMETER ( MAXIT = 30 )
  152. * ..
  153. * .. Local Scalars ..
  154. INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
  155. $ LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
  156. $ NM1, NMAXIT
  157. DOUBLE PRECISION ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
  158. $ S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
  159. * ..
  160. * .. External Functions ..
  161. LOGICAL LSAME
  162. DOUBLE PRECISION DLAMCH, DLANST, DLAPY2
  163. EXTERNAL LSAME, DLAMCH, DLANST, DLAPY2
  164. * ..
  165. * .. External Subroutines ..
  166. EXTERNAL DLAE2, DLAEV2, DLARTG, DLASCL, DLASET, DLASR,
  167. $ DLASRT, DSWAP, XERBLA
  168. * ..
  169. * .. Intrinsic Functions ..
  170. INTRINSIC ABS, MAX, SIGN, SQRT
  171. * ..
  172. * .. Executable Statements ..
  173. *
  174. * Test the input parameters.
  175. *
  176. INFO = 0
  177. *
  178. IF( LSAME( COMPZ, 'N' ) ) THEN
  179. ICOMPZ = 0
  180. ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  181. ICOMPZ = 1
  182. ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  183. ICOMPZ = 2
  184. ELSE
  185. ICOMPZ = -1
  186. END IF
  187. IF( ICOMPZ.LT.0 ) THEN
  188. INFO = -1
  189. ELSE IF( N.LT.0 ) THEN
  190. INFO = -2
  191. ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
  192. $ N ) ) ) THEN
  193. INFO = -6
  194. END IF
  195. IF( INFO.NE.0 ) THEN
  196. CALL XERBLA( 'DSTEQR', -INFO )
  197. RETURN
  198. END IF
  199. *
  200. * Quick return if possible
  201. *
  202. IF( N.EQ.0 )
  203. $ RETURN
  204. *
  205. IF( N.EQ.1 ) THEN
  206. IF( ICOMPZ.EQ.2 )
  207. $ Z( 1, 1 ) = ONE
  208. RETURN
  209. END IF
  210. *
  211. * Determine the unit roundoff and over/underflow thresholds.
  212. *
  213. EPS = DLAMCH( 'E' )
  214. EPS2 = EPS**2
  215. SAFMIN = DLAMCH( 'S' )
  216. SAFMAX = ONE / SAFMIN
  217. SSFMAX = SQRT( SAFMAX ) / THREE
  218. SSFMIN = SQRT( SAFMIN ) / EPS2
  219. *
  220. * Compute the eigenvalues and eigenvectors of the tridiagonal
  221. * matrix.
  222. *
  223. IF( ICOMPZ.EQ.2 )
  224. $ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
  225. *
  226. NMAXIT = N*MAXIT
  227. JTOT = 0
  228. *
  229. * Determine where the matrix splits and choose QL or QR iteration
  230. * for each block, according to whether top or bottom diagonal
  231. * element is smaller.
  232. *
  233. L1 = 1
  234. NM1 = N - 1
  235. *
  236. 10 CONTINUE
  237. IF( L1.GT.N )
  238. $ GO TO 160
  239. IF( L1.GT.1 )
  240. $ E( L1-1 ) = ZERO
  241. IF( L1.LE.NM1 ) THEN
  242. DO 20 M = L1, NM1
  243. TST = ABS( E( M ) )
  244. IF( TST.EQ.ZERO )
  245. $ GO TO 30
  246. IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
  247. $ 1 ) ) ) )*EPS ) THEN
  248. E( M ) = ZERO
  249. GO TO 30
  250. END IF
  251. 20 CONTINUE
  252. END IF
  253. M = N
  254. *
  255. 30 CONTINUE
  256. L = L1
  257. LSV = L
  258. LEND = M
  259. LENDSV = LEND
  260. L1 = M + 1
  261. IF( LEND.EQ.L )
  262. $ GO TO 10
  263. *
  264. * Scale submatrix in rows and columns L to LEND
  265. *
  266. ANORM = DLANST( 'M', LEND-L+1, D( L ), E( L ) )
  267. ISCALE = 0
  268. IF( ANORM.EQ.ZERO )
  269. $ GO TO 10
  270. IF( ANORM.GT.SSFMAX ) THEN
  271. ISCALE = 1
  272. CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
  273. $ INFO )
  274. CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
  275. $ INFO )
  276. ELSE IF( ANORM.LT.SSFMIN ) THEN
  277. ISCALE = 2
  278. CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
  279. $ INFO )
  280. CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
  281. $ INFO )
  282. END IF
  283. *
  284. * Choose between QL and QR iteration
  285. *
  286. IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
  287. LEND = LSV
  288. L = LENDSV
  289. END IF
  290. *
  291. IF( LEND.GT.L ) THEN
  292. *
  293. * QL Iteration
  294. *
  295. * Look for small subdiagonal element.
  296. *
  297. 40 CONTINUE
  298. IF( L.NE.LEND ) THEN
  299. LENDM1 = LEND - 1
  300. DO 50 M = L, LENDM1
  301. TST = ABS( E( M ) )**2
  302. IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
  303. $ SAFMIN )GO TO 60
  304. 50 CONTINUE
  305. END IF
  306. *
  307. M = LEND
  308. *
  309. 60 CONTINUE
  310. IF( M.LT.LEND )
  311. $ E( M ) = ZERO
  312. P = D( L )
  313. IF( M.EQ.L )
  314. $ GO TO 80
  315. *
  316. * If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
  317. * to compute its eigensystem.
  318. *
  319. IF( M.EQ.L+1 ) THEN
  320. IF( ICOMPZ.GT.0 ) THEN
  321. CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
  322. WORK( L ) = C
  323. WORK( N-1+L ) = S
  324. CALL DLASR( 'R', 'V', 'B', N, 2, WORK( L ),
  325. $ WORK( N-1+L ), Z( 1, L ), LDZ )
  326. ELSE
  327. CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
  328. END IF
  329. D( L ) = RT1
  330. D( L+1 ) = RT2
  331. E( L ) = ZERO
  332. L = L + 2
  333. IF( L.LE.LEND )
  334. $ GO TO 40
  335. GO TO 140
  336. END IF
  337. *
  338. IF( JTOT.EQ.NMAXIT )
  339. $ GO TO 140
  340. JTOT = JTOT + 1
  341. *
  342. * Form shift.
  343. *
  344. G = ( D( L+1 )-P ) / ( TWO*E( L ) )
  345. R = DLAPY2( G, ONE )
  346. G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
  347. *
  348. S = ONE
  349. C = ONE
  350. P = ZERO
  351. *
  352. * Inner loop
  353. *
  354. MM1 = M - 1
  355. DO 70 I = MM1, L, -1
  356. F = S*E( I )
  357. B = C*E( I )
  358. CALL DLARTG( G, F, C, S, R )
  359. IF( I.NE.M-1 )
  360. $ E( I+1 ) = R
  361. G = D( I+1 ) - P
  362. R = ( D( I )-G )*S + TWO*C*B
  363. P = S*R
  364. D( I+1 ) = G + P
  365. G = C*R - B
  366. *
  367. * If eigenvectors are desired, then save rotations.
  368. *
  369. IF( ICOMPZ.GT.0 ) THEN
  370. WORK( I ) = C
  371. WORK( N-1+I ) = -S
  372. END IF
  373. *
  374. 70 CONTINUE
  375. *
  376. * If eigenvectors are desired, then apply saved rotations.
  377. *
  378. IF( ICOMPZ.GT.0 ) THEN
  379. MM = M - L + 1
  380. CALL DLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
  381. $ Z( 1, L ), LDZ )
  382. END IF
  383. *
  384. D( L ) = D( L ) - P
  385. E( L ) = G
  386. GO TO 40
  387. *
  388. * Eigenvalue found.
  389. *
  390. 80 CONTINUE
  391. D( L ) = P
  392. *
  393. L = L + 1
  394. IF( L.LE.LEND )
  395. $ GO TO 40
  396. GO TO 140
  397. *
  398. ELSE
  399. *
  400. * QR Iteration
  401. *
  402. * Look for small superdiagonal element.
  403. *
  404. 90 CONTINUE
  405. IF( L.NE.LEND ) THEN
  406. LENDP1 = LEND + 1
  407. DO 100 M = L, LENDP1, -1
  408. TST = ABS( E( M-1 ) )**2
  409. IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
  410. $ SAFMIN )GO TO 110
  411. 100 CONTINUE
  412. END IF
  413. *
  414. M = LEND
  415. *
  416. 110 CONTINUE
  417. IF( M.GT.LEND )
  418. $ E( M-1 ) = ZERO
  419. P = D( L )
  420. IF( M.EQ.L )
  421. $ GO TO 130
  422. *
  423. * If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
  424. * to compute its eigensystem.
  425. *
  426. IF( M.EQ.L-1 ) THEN
  427. IF( ICOMPZ.GT.0 ) THEN
  428. CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
  429. WORK( M ) = C
  430. WORK( N-1+M ) = S
  431. CALL DLASR( 'R', 'V', 'F', N, 2, WORK( M ),
  432. $ WORK( N-1+M ), Z( 1, L-1 ), LDZ )
  433. ELSE
  434. CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
  435. END IF
  436. D( L-1 ) = RT1
  437. D( L ) = RT2
  438. E( L-1 ) = ZERO
  439. L = L - 2
  440. IF( L.GE.LEND )
  441. $ GO TO 90
  442. GO TO 140
  443. END IF
  444. *
  445. IF( JTOT.EQ.NMAXIT )
  446. $ GO TO 140
  447. JTOT = JTOT + 1
  448. *
  449. * Form shift.
  450. *
  451. G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
  452. R = DLAPY2( G, ONE )
  453. G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
  454. *
  455. S = ONE
  456. C = ONE
  457. P = ZERO
  458. *
  459. * Inner loop
  460. *
  461. LM1 = L - 1
  462. DO 120 I = M, LM1
  463. F = S*E( I )
  464. B = C*E( I )
  465. CALL DLARTG( G, F, C, S, R )
  466. IF( I.NE.M )
  467. $ E( I-1 ) = R
  468. G = D( I ) - P
  469. R = ( D( I+1 )-G )*S + TWO*C*B
  470. P = S*R
  471. D( I ) = G + P
  472. G = C*R - B
  473. *
  474. * If eigenvectors are desired, then save rotations.
  475. *
  476. IF( ICOMPZ.GT.0 ) THEN
  477. WORK( I ) = C
  478. WORK( N-1+I ) = S
  479. END IF
  480. *
  481. 120 CONTINUE
  482. *
  483. * If eigenvectors are desired, then apply saved rotations.
  484. *
  485. IF( ICOMPZ.GT.0 ) THEN
  486. MM = L - M + 1
  487. CALL DLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
  488. $ Z( 1, M ), LDZ )
  489. END IF
  490. *
  491. D( L ) = D( L ) - P
  492. E( LM1 ) = G
  493. GO TO 90
  494. *
  495. * Eigenvalue found.
  496. *
  497. 130 CONTINUE
  498. D( L ) = P
  499. *
  500. L = L - 1
  501. IF( L.GE.LEND )
  502. $ GO TO 90
  503. GO TO 140
  504. *
  505. END IF
  506. *
  507. * Undo scaling if necessary
  508. *
  509. 140 CONTINUE
  510. IF( ISCALE.EQ.1 ) THEN
  511. CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
  512. $ D( LSV ), N, INFO )
  513. CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
  514. $ N, INFO )
  515. ELSE IF( ISCALE.EQ.2 ) THEN
  516. CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
  517. $ D( LSV ), N, INFO )
  518. CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
  519. $ N, INFO )
  520. END IF
  521. *
  522. * Check for no convergence to an eigenvalue after a total
  523. * of N*MAXIT iterations.
  524. *
  525. IF( JTOT.LT.NMAXIT )
  526. $ GO TO 10
  527. DO 150 I = 1, N - 1
  528. IF( E( I ).NE.ZERO )
  529. $ INFO = INFO + 1
  530. 150 CONTINUE
  531. GO TO 190
  532. *
  533. * Order eigenvalues and eigenvectors.
  534. *
  535. 160 CONTINUE
  536. IF( ICOMPZ.EQ.0 ) THEN
  537. *
  538. * Use Quick Sort
  539. *
  540. CALL DLASRT( 'I', N, D, INFO )
  541. *
  542. ELSE
  543. *
  544. * Use Selection Sort to minimize swaps of eigenvectors
  545. *
  546. DO 180 II = 2, N
  547. I = II - 1
  548. K = I
  549. P = D( I )
  550. DO 170 J = II, N
  551. IF( D( J ).LT.P ) THEN
  552. K = J
  553. P = D( J )
  554. END IF
  555. 170 CONTINUE
  556. IF( K.NE.I ) THEN
  557. D( K ) = D( I )
  558. D( I ) = P
  559. CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
  560. END IF
  561. 180 CONTINUE
  562. END IF
  563. *
  564. 190 CONTINUE
  565. RETURN
  566. *
  567. * End of DSTEQR
  568. *
  569. END