You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlatrs3.f 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. *> \brief \b DLATRS3 solves a triangular system of equations with the scale factors set to prevent overflow.
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA,
  7. * X, LDX, SCALE, CNORM, WORK, LWORK, INFO )
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  11. * INTEGER INFO, LDA, LWORK, LDX, N, NRHS
  12. * ..
  13. * .. Array Arguments ..
  14. * DOUBLE PRECISION A( LDA, * ), CNORM( * ), SCALE( * ),
  15. * WORK( * ), X( LDX, * )
  16. * ..
  17. *
  18. *
  19. *> \par Purpose:
  20. * =============
  21. *>
  22. *> \verbatim
  23. *>
  24. *> DLATRS3 solves one of the triangular systems
  25. *>
  26. *> A * X = B * diag(scale) or A**T * X = B * diag(scale)
  27. *>
  28. *> with scaling to prevent overflow. Here A is an upper or lower
  29. *> triangular matrix, A**T denotes the transpose of A. X and B are
  30. *> n by nrhs matrices and scale is an nrhs element vector of scaling
  31. *> factors. A scaling factor scale(j) is usually less than or equal
  32. *> to 1, chosen such that X(:,j) is less than the overflow threshold.
  33. *> If the matrix A is singular (A(j,j) = 0 for some j), then
  34. *> a non-trivial solution to A*X = 0 is returned. If the system is
  35. *> so badly scaled that the solution cannot be represented as
  36. *> (1/scale(k))*X(:,k), then x(:,k) = 0 and scale(k) is returned.
  37. *>
  38. *> This is a BLAS-3 version of LATRS for solving several right
  39. *> hand sides simultaneously.
  40. *>
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the matrix A is upper or lower triangular.
  50. *> = 'U': Upper triangular
  51. *> = 'L': Lower triangular
  52. *> \endverbatim
  53. *>
  54. *> \param[in] TRANS
  55. *> \verbatim
  56. *> TRANS is CHARACTER*1
  57. *> Specifies the operation applied to A.
  58. *> = 'N': Solve A * x = s*b (No transpose)
  59. *> = 'T': Solve A**T* x = s*b (Transpose)
  60. *> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
  61. *> \endverbatim
  62. *>
  63. *> \param[in] DIAG
  64. *> \verbatim
  65. *> DIAG is CHARACTER*1
  66. *> Specifies whether or not the matrix A is unit triangular.
  67. *> = 'N': Non-unit triangular
  68. *> = 'U': Unit triangular
  69. *> \endverbatim
  70. *>
  71. *> \param[in] NORMIN
  72. *> \verbatim
  73. *> NORMIN is CHARACTER*1
  74. *> Specifies whether CNORM has been set or not.
  75. *> = 'Y': CNORM contains the column norms on entry
  76. *> = 'N': CNORM is not set on entry. On exit, the norms will
  77. *> be computed and stored in CNORM.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The order of the matrix A. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] NRHS
  87. *> \verbatim
  88. *> NRHS is INTEGER
  89. *> The number of columns of X. NRHS >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] A
  93. *> \verbatim
  94. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  95. *> The triangular matrix A. If UPLO = 'U', the leading n by n
  96. *> upper triangular part of the array A contains the upper
  97. *> triangular matrix, and the strictly lower triangular part of
  98. *> A is not referenced. If UPLO = 'L', the leading n by n lower
  99. *> triangular part of the array A contains the lower triangular
  100. *> matrix, and the strictly upper triangular part of A is not
  101. *> referenced. If DIAG = 'U', the diagonal elements of A are
  102. *> also not referenced and are assumed to be 1.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDA
  106. *> \verbatim
  107. *> LDA is INTEGER
  108. *> The leading dimension of the array A. LDA >= max (1,N).
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] X
  112. *> \verbatim
  113. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  114. *> On entry, the right hand side B of the triangular system.
  115. *> On exit, X is overwritten by the solution matrix X.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] LDX
  119. *> \verbatim
  120. *> LDX is INTEGER
  121. *> The leading dimension of the array X. LDX >= max (1,N).
  122. *> \endverbatim
  123. *>
  124. *> \param[out] SCALE
  125. *> \verbatim
  126. *> SCALE is DOUBLE PRECISION array, dimension (NRHS)
  127. *> The scaling factor s(k) is for the triangular system
  128. *> A * x(:,k) = s(k)*b(:,k) or A**T* x(:,k) = s(k)*b(:,k).
  129. *> If SCALE = 0, the matrix A is singular or badly scaled.
  130. *> If A(j,j) = 0 is encountered, a non-trivial vector x(:,k)
  131. *> that is an exact or approximate solution to A*x(:,k) = 0
  132. *> is returned. If the system so badly scaled that solution
  133. *> cannot be presented as x(:,k) * 1/s(k), then x(:,k) = 0
  134. *> is returned.
  135. *> \endverbatim
  136. *>
  137. *> \param[in,out] CNORM
  138. *> \verbatim
  139. *> CNORM is DOUBLE PRECISION array, dimension (N)
  140. *>
  141. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  142. *> contains the norm of the off-diagonal part of the j-th column
  143. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  144. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  145. *> must be greater than or equal to the 1-norm.
  146. *>
  147. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  148. *> returns the 1-norm of the offdiagonal part of the j-th column
  149. *> of A.
  150. *> \endverbatim
  151. *>
  152. *> \param[out] WORK
  153. *> \verbatim
  154. *> WORK is DOUBLE PRECISION array, dimension (LWORK).
  155. *> On exit, if INFO = 0, WORK(1) returns the optimal size of
  156. *> WORK.
  157. *> \endverbatim
  158. *>
  159. *> \param[in] LWORK
  160. *> LWORK is INTEGER
  161. *> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where
  162. *> NBA = (N + NB - 1)/NB and NB is the optimal block size.
  163. *>
  164. *> If LWORK = -1, then a workspace query is assumed; the routine
  165. *> only calculates the optimal dimensions of the WORK array, returns
  166. *> this value as the first entry of the WORK array, and no error
  167. *> message related to LWORK is issued by XERBLA.
  168. *>
  169. *> \param[out] INFO
  170. *> \verbatim
  171. *> INFO is INTEGER
  172. *> = 0: successful exit
  173. *> < 0: if INFO = -k, the k-th argument had an illegal value
  174. *> \endverbatim
  175. *
  176. * Authors:
  177. * ========
  178. *
  179. *> \author Univ. of Tennessee
  180. *> \author Univ. of California Berkeley
  181. *> \author Univ. of Colorado Denver
  182. *> \author NAG Ltd.
  183. *
  184. *> \ingroup doubleOTHERauxiliary
  185. *> \par Further Details:
  186. * =====================
  187. * \verbatim
  188. * The algorithm follows the structure of a block triangular solve.
  189. * The diagonal block is solved with a call to the robust the triangular
  190. * solver LATRS for every right-hand side RHS = 1, ..., NRHS
  191. * op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS ),
  192. * where op( A ) = A or op( A ) = A**T.
  193. * The linear block updates operate on block columns of X,
  194. * B( I, K ) - op(A( I, J )) * X( J, K )
  195. * and use GEMM. To avoid overflow in the linear block update, the worst case
  196. * growth is estimated. For every RHS, a scale factor s <= 1.0 is computed
  197. * such that
  198. * || s * B( I, RHS )||_oo
  199. * + || op(A( I, J )) ||_oo * || s * X( J, RHS ) ||_oo <= Overflow threshold
  200. *
  201. * Once all columns of a block column have been rescaled (BLAS-1), the linear
  202. * update is executed with GEMM without overflow.
  203. *
  204. * To limit rescaling, local scale factors track the scaling of column segments.
  205. * There is one local scale factor s( I, RHS ) per block row I = 1, ..., NBA
  206. * per right-hand side column RHS = 1, ..., NRHS. The global scale factor
  207. * SCALE( RHS ) is chosen as the smallest local scale factor s( I, RHS )
  208. * I = 1, ..., NBA.
  209. * A triangular solve op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS )
  210. * updates the local scale factor s( J, RHS ) := s( J, RHS ) * SCALOC. The
  211. * linear update of potentially inconsistently scaled vector segments
  212. * s( I, RHS ) * b( I, RHS ) - op(A( I, J )) * ( s( J, RHS )* x( J, RHS ) )
  213. * computes a consistent scaling SCAMIN = MIN( s(I, RHS ), s(J, RHS) ) and,
  214. * if necessary, rescales the blocks prior to calling GEMM.
  215. *
  216. * \endverbatim
  217. * =====================================================================
  218. * References:
  219. * C. C. Kjelgaard Mikkelsen, A. B. Schwarz and L. Karlsson (2019).
  220. * Parallel robust solution of triangular linear systems. Concurrency
  221. * and Computation: Practice and Experience, 31(19), e5064.
  222. *
  223. * Contributor:
  224. * Angelika Schwarz, Umea University, Sweden.
  225. *
  226. * =====================================================================
  227. SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA,
  228. $ X, LDX, SCALE, CNORM, WORK, LWORK, INFO )
  229. IMPLICIT NONE
  230. *
  231. * .. Scalar Arguments ..
  232. CHARACTER DIAG, TRANS, NORMIN, UPLO
  233. INTEGER INFO, LDA, LWORK, LDX, N, NRHS
  234. * ..
  235. * .. Array Arguments ..
  236. DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( LDX, * ),
  237. $ SCALE( * ), WORK( * )
  238. * ..
  239. *
  240. * =====================================================================
  241. *
  242. * .. Parameters ..
  243. DOUBLE PRECISION ZERO, ONE
  244. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  245. INTEGER NBMAX, NBMIN, NBRHS, NRHSMIN
  246. PARAMETER ( NRHSMIN = 2, NBRHS = 32 )
  247. PARAMETER ( NBMIN = 8, NBMAX = 64 )
  248. * ..
  249. * .. Local Arrays ..
  250. DOUBLE PRECISION W( NBMAX ), XNRM( NBRHS )
  251. * ..
  252. * .. Local Scalars ..
  253. LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER
  254. INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J,
  255. $ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2,
  256. $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS
  257. DOUBLE PRECISION ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC,
  258. $ SCAMIN, SMLNUM, TMAX
  259. * ..
  260. * .. External Functions ..
  261. LOGICAL LSAME
  262. INTEGER ILAENV
  263. DOUBLE PRECISION DLAMCH, DLANGE, DLARMM
  264. EXTERNAL DLAMCH, DLANGE, DLARMM, ILAENV, LSAME
  265. * ..
  266. * .. External Subroutines ..
  267. EXTERNAL DLATRS, DSCAL, XERBLA
  268. * ..
  269. * .. Intrinsic Functions ..
  270. INTRINSIC ABS, MAX, MIN
  271. * ..
  272. * .. Executable Statements ..
  273. *
  274. INFO = 0
  275. UPPER = LSAME( UPLO, 'U' )
  276. NOTRAN = LSAME( TRANS, 'N' )
  277. NOUNIT = LSAME( DIAG, 'N' )
  278. LQUERY = ( LWORK.EQ.-1 )
  279. *
  280. * Partition A and X into blocks
  281. *
  282. NB = MAX( 8, ILAENV( 1, 'DLATRS', '', N, N, -1, -1 ) )
  283. NB = MIN( NBMAX, NB )
  284. NBA = MAX( 1, (N + NB - 1) / NB )
  285. NBX = MAX( 1, (NRHS + NBRHS - 1) / NBRHS )
  286. *
  287. * Compute the workspace
  288. *
  289. * The workspace comprises two parts.
  290. * The first part stores the local scale factors. Each simultaneously
  291. * computed right-hand side requires one local scale factor per block
  292. * row. WORK( I+KK*LDS ) is the scale factor of the vector
  293. * segment associated with the I-th block row and the KK-th vector
  294. * in the block column.
  295. LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) )
  296. LDS = NBA
  297. * The second part stores upper bounds of the triangular A. There are
  298. * a total of NBA x NBA blocks, of which only the upper triangular
  299. * part or the lower triangular part is referenced. The upper bound of
  300. * the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ).
  301. LANRM = NBA * NBA
  302. AWRK = LSCALE
  303. WORK( 1 ) = LSCALE + LANRM
  304. *
  305. * Test the input parameters
  306. *
  307. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  308. INFO = -1
  309. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  310. $ LSAME( TRANS, 'C' ) ) THEN
  311. INFO = -2
  312. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  313. INFO = -3
  314. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  315. $ LSAME( NORMIN, 'N' ) ) THEN
  316. INFO = -4
  317. ELSE IF( N.LT.0 ) THEN
  318. INFO = -5
  319. ELSE IF( NRHS.LT.0 ) THEN
  320. INFO = -6
  321. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  322. INFO = -8
  323. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  324. INFO = -10
  325. ELSE IF( .NOT.LQUERY .AND. LWORK.LT.WORK( 1 ) ) THEN
  326. INFO = -14
  327. END IF
  328. IF( INFO.NE.0 ) THEN
  329. CALL XERBLA( 'DLATRS3', -INFO )
  330. RETURN
  331. ELSE IF( LQUERY ) THEN
  332. RETURN
  333. END IF
  334. *
  335. * Initialize scaling factors
  336. *
  337. DO KK = 1, NRHS
  338. SCALE( KK ) = ONE
  339. END DO
  340. *
  341. * Quick return if possible
  342. *
  343. IF( MIN( N, NRHS ).EQ.0 )
  344. $ RETURN
  345. *
  346. * Determine machine dependent constant to control overflow.
  347. *
  348. BIGNUM = DLAMCH( 'Overflow' )
  349. SMLNUM = DLAMCH( 'Safe Minimum' )
  350. *
  351. * Use unblocked code for small problems
  352. *
  353. IF( NRHS.LT.NRHSMIN ) THEN
  354. CALL DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X( 1, 1),
  355. $ SCALE( 1 ), CNORM, INFO )
  356. DO K = 2, NRHS
  357. CALL DLATRS( UPLO, TRANS, DIAG, 'Y', N, A, LDA, X( 1, K ),
  358. $ SCALE( K ), CNORM, INFO )
  359. END DO
  360. RETURN
  361. END IF
  362. *
  363. * Compute norms of blocks of A excluding diagonal blocks and find
  364. * the block with the largest norm TMAX.
  365. *
  366. TMAX = ZERO
  367. DO J = 1, NBA
  368. J1 = (J-1)*NB + 1
  369. J2 = MIN( J*NB, N ) + 1
  370. IF ( UPPER ) THEN
  371. IFIRST = 1
  372. ILAST = J - 1
  373. ELSE
  374. IFIRST = J + 1
  375. ILAST = NBA
  376. END IF
  377. DO I = IFIRST, ILAST
  378. I1 = (I-1)*NB + 1
  379. I2 = MIN( I*NB, N ) + 1
  380. *
  381. * Compute upper bound of A( I1:I2-1, J1:J2-1 ).
  382. *
  383. IF( NOTRAN ) THEN
  384. ANRM = DLANGE( 'I', I2-I1, J2-J1, A( I1, J1 ), LDA, W )
  385. WORK( AWRK + I+(J-1)*NBA ) = ANRM
  386. ELSE
  387. ANRM = DLANGE( '1', I2-I1, J2-J1, A( I1, J1 ), LDA, W )
  388. WORK( AWRK + J+(I-1)*NBA ) = ANRM
  389. END IF
  390. TMAX = MAX( TMAX, ANRM )
  391. END DO
  392. END DO
  393. *
  394. IF( .NOT. TMAX.LE.DLAMCH('Overflow') ) THEN
  395. *
  396. * Some matrix entries have huge absolute value. At least one upper
  397. * bound norm( A(I1:I2-1, J1:J2-1), 'I') is not a valid floating-point
  398. * number, either due to overflow in LANGE or due to Inf in A.
  399. * Fall back to LATRS. Set normin = 'N' for every right-hand side to
  400. * force computation of TSCAL in LATRS to avoid the likely overflow
  401. * in the computation of the column norms CNORM.
  402. *
  403. DO K = 1, NRHS
  404. CALL DLATRS( UPLO, TRANS, DIAG, 'N', N, A, LDA, X( 1, K ),
  405. $ SCALE( K ), CNORM, INFO )
  406. END DO
  407. RETURN
  408. END IF
  409. *
  410. * Every right-hand side requires workspace to store NBA local scale
  411. * factors. To save workspace, X is computed successively in block columns
  412. * of width NBRHS, requiring a total of NBA x NBRHS space. If sufficient
  413. * workspace is available, larger values of NBRHS or NBRHS = NRHS are viable.
  414. DO K = 1, NBX
  415. * Loop over block columns (index = K) of X and, for column-wise scalings,
  416. * over individual columns (index = KK).
  417. * K1: column index of the first column in X( J, K )
  418. * K2: column index of the first column in X( J, K+1 )
  419. * so the K2 - K1 is the column count of the block X( J, K )
  420. K1 = (K-1)*NBRHS + 1
  421. K2 = MIN( K*NBRHS, NRHS ) + 1
  422. *
  423. * Initialize local scaling factors of current block column X( J, K )
  424. *
  425. DO KK = 1, K2-K1
  426. DO I = 1, NBA
  427. WORK( I+KK*LDS ) = ONE
  428. END DO
  429. END DO
  430. *
  431. IF( NOTRAN ) THEN
  432. *
  433. * Solve A * X(:, K1:K2-1) = B * diag(scale(K1:K2-1))
  434. *
  435. IF( UPPER ) THEN
  436. JFIRST = NBA
  437. JLAST = 1
  438. JINC = -1
  439. ELSE
  440. JFIRST = 1
  441. JLAST = NBA
  442. JINC = 1
  443. END IF
  444. ELSE
  445. *
  446. * Solve A**T * X(:, K1:K2-1) = B * diag(scale(K1:K2-1))
  447. *
  448. IF( UPPER ) THEN
  449. JFIRST = 1
  450. JLAST = NBA
  451. JINC = 1
  452. ELSE
  453. JFIRST = NBA
  454. JLAST = 1
  455. JINC = -1
  456. END IF
  457. END IF
  458. *
  459. DO J = JFIRST, JLAST, JINC
  460. * J1: row index of the first row in A( J, J )
  461. * J2: row index of the first row in A( J+1, J+1 )
  462. * so that J2 - J1 is the row count of the block A( J, J )
  463. J1 = (J-1)*NB + 1
  464. J2 = MIN( J*NB, N ) + 1
  465. *
  466. * Solve op(A( J, J )) * X( J, RHS ) = SCALOC * B( J, RHS )
  467. * for all right-hand sides in the current block column,
  468. * one RHS at a time.
  469. *
  470. DO KK = 1, K2-K1
  471. RHS = K1 + KK - 1
  472. IF( KK.EQ.1 ) THEN
  473. CALL DLATRS( UPLO, TRANS, DIAG, 'N', J2-J1,
  474. $ A( J1, J1 ), LDA, X( J1, RHS ),
  475. $ SCALOC, CNORM, INFO )
  476. ELSE
  477. CALL DLATRS( UPLO, TRANS, DIAG, 'Y', J2-J1,
  478. $ A( J1, J1 ), LDA, X( J1, RHS ),
  479. $ SCALOC, CNORM, INFO )
  480. END IF
  481. * Find largest absolute value entry in the vector segment
  482. * X( J1:J2-1, RHS ) as an upper bound for the worst case
  483. * growth in the linear updates.
  484. XNRM( KK ) = DLANGE( 'I', J2-J1, 1, X( J1, RHS ),
  485. $ LDX, W )
  486. *
  487. IF( SCALOC .EQ. ZERO ) THEN
  488. * LATRS found that A is singular through A(j,j) = 0.
  489. * Reset the computation x(1:n) = 0, x(j) = 1, SCALE = 0
  490. * and compute A*x = 0 (or A**T*x = 0). Note that
  491. * X(J1:J2-1, KK) is set by LATRS.
  492. SCALE( RHS ) = ZERO
  493. DO II = 1, J1-1
  494. X( II, KK ) = ZERO
  495. END DO
  496. DO II = J2, N
  497. X( II, KK ) = ZERO
  498. END DO
  499. * Discard the local scale factors.
  500. DO II = 1, NBA
  501. WORK( II+KK*LDS ) = ONE
  502. END DO
  503. SCALOC = ONE
  504. ELSE IF( SCALOC * WORK( J+KK*LDS ) .EQ. ZERO ) THEN
  505. * LATRS computed a valid scale factor, but combined with
  506. * the current scaling the solution does not have a
  507. * scale factor > 0.
  508. *
  509. * Set WORK( J+KK*LDS ) to smallest valid scale
  510. * factor and increase SCALOC accordingly.
  511. SCAL = WORK( J+KK*LDS ) / SMLNUM
  512. SCALOC = SCALOC * SCAL
  513. WORK( J+KK*LDS ) = SMLNUM
  514. * If LATRS overestimated the growth, x may be
  515. * rescaled to preserve a valid combined scale
  516. * factor WORK( J, KK ) > 0.
  517. RSCAL = ONE / SCALOC
  518. IF( XNRM( KK ) * RSCAL .LE. BIGNUM ) THEN
  519. XNRM( KK ) = XNRM( KK ) * RSCAL
  520. CALL DSCAL( J2-J1, RSCAL, X( J1, RHS ), 1 )
  521. SCALOC = ONE
  522. ELSE
  523. * The system op(A) * x = b is badly scaled and its
  524. * solution cannot be represented as (1/scale) * x.
  525. * Set x to zero. This approach deviates from LATRS
  526. * where a completely meaningless non-zero vector
  527. * is returned that is not a solution to op(A) * x = b.
  528. SCALE( RHS ) = ZERO
  529. DO II = 1, N
  530. X( II, KK ) = ZERO
  531. END DO
  532. * Discard the local scale factors.
  533. DO II = 1, NBA
  534. WORK( II+KK*LDS ) = ONE
  535. END DO
  536. SCALOC = ONE
  537. END IF
  538. END IF
  539. SCALOC = SCALOC * WORK( J+KK*LDS )
  540. WORK( J+KK*LDS ) = SCALOC
  541. END DO
  542. *
  543. * Linear block updates
  544. *
  545. IF( NOTRAN ) THEN
  546. IF( UPPER ) THEN
  547. IFIRST = J - 1
  548. ILAST = 1
  549. IINC = -1
  550. ELSE
  551. IFIRST = J + 1
  552. ILAST = NBA
  553. IINC = 1
  554. END IF
  555. ELSE
  556. IF( UPPER ) THEN
  557. IFIRST = J + 1
  558. ILAST = NBA
  559. IINC = 1
  560. ELSE
  561. IFIRST = J - 1
  562. ILAST = 1
  563. IINC = -1
  564. END IF
  565. END IF
  566. *
  567. DO I = IFIRST, ILAST, IINC
  568. * I1: row index of the first column in X( I, K )
  569. * I2: row index of the first column in X( I+1, K )
  570. * so the I2 - I1 is the row count of the block X( I, K )
  571. I1 = (I-1)*NB + 1
  572. I2 = MIN( I*NB, N ) + 1
  573. *
  574. * Prepare the linear update to be executed with GEMM.
  575. * For each column, compute a consistent scaling, a
  576. * scaling factor to survive the linear update, and
  577. * rescale the column segments, if necesssary. Then
  578. * the linear update is safely executed.
  579. *
  580. DO KK = 1, K2-K1
  581. RHS = K1 + KK - 1
  582. * Compute consistent scaling
  583. SCAMIN = MIN( WORK( I + KK*LDS), WORK( J + KK*LDS ) )
  584. *
  585. * Compute scaling factor to survive the linear update
  586. * simulating consistent scaling.
  587. *
  588. BNRM = DLANGE( 'I', I2-I1, 1, X( I1, RHS ), LDX, W )
  589. BNRM = BNRM*( SCAMIN / WORK( I+KK*LDS ) )
  590. XNRM( KK ) = XNRM( KK )*(SCAMIN / WORK( J+KK*LDS ))
  591. ANRM = WORK( AWRK + I+(J-1)*NBA )
  592. SCALOC = DLARMM( ANRM, XNRM( KK ), BNRM )
  593. *
  594. * Simultaneously apply the robust update factor and the
  595. * consistency scaling factor to B( I, KK ) and B( J, KK ).
  596. *
  597. SCAL = ( SCAMIN / WORK( I+KK*LDS) )*SCALOC
  598. IF( SCAL.NE.ONE ) THEN
  599. CALL DSCAL( I2-I1, SCAL, X( I1, RHS ), 1 )
  600. WORK( I+KK*LDS ) = SCAMIN*SCALOC
  601. END IF
  602. *
  603. SCAL = ( SCAMIN / WORK( J+KK*LDS ) )*SCALOC
  604. IF( SCAL.NE.ONE ) THEN
  605. CALL DSCAL( J2-J1, SCAL, X( J1, RHS ), 1 )
  606. WORK( J+KK*LDS ) = SCAMIN*SCALOC
  607. END IF
  608. END DO
  609. *
  610. IF( NOTRAN ) THEN
  611. *
  612. * B( I, K ) := B( I, K ) - A( I, J ) * X( J, K )
  613. *
  614. CALL DGEMM( 'N', 'N', I2-I1, K2-K1, J2-J1, -ONE,
  615. $ A( I1, J1 ), LDA, X( J1, K1 ), LDX,
  616. $ ONE, X( I1, K1 ), LDX )
  617. ELSE
  618. *
  619. * B( I, K ) := B( I, K ) - A( J, I )**T * X( J, K )
  620. *
  621. CALL DGEMM( 'T', 'N', I2-I1, K2-K1, J2-J1, -ONE,
  622. $ A( J1, I1 ), LDA, X( J1, K1 ), LDX,
  623. $ ONE, X( I1, K1 ), LDX )
  624. END IF
  625. END DO
  626. END DO
  627. *
  628. * Reduce local scaling factors
  629. *
  630. DO KK = 1, K2-K1
  631. RHS = K1 + KK - 1
  632. DO I = 1, NBA
  633. SCALE( RHS ) = MIN( SCALE( RHS ), WORK( I+KK*LDS ) )
  634. END DO
  635. END DO
  636. *
  637. * Realize consistent scaling
  638. *
  639. DO KK = 1, K2-K1
  640. RHS = K1 + KK - 1
  641. IF( SCALE( RHS ).NE.ONE .AND. SCALE( RHS ).NE. ZERO ) THEN
  642. DO I = 1, NBA
  643. I1 = (I-1)*NB + 1
  644. I2 = MIN( I*NB, N ) + 1
  645. SCAL = SCALE( RHS ) / WORK( I+KK*LDS )
  646. IF( SCAL.NE.ONE )
  647. $ CALL DSCAL( I2-I1, SCAL, X( I1, RHS ), 1 )
  648. END DO
  649. END IF
  650. END DO
  651. END DO
  652. RETURN
  653. *
  654. * End of DLATRS3
  655. *
  656. END