You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasr.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. *> \brief \b DLASR applies a sequence of plane rotations to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLASR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIRECT, PIVOT, SIDE
  25. * INTEGER LDA, M, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), C( * ), S( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DLASR applies a sequence of plane rotations to a real matrix A,
  38. *> from either the left or the right.
  39. *>
  40. *> When SIDE = 'L', the transformation takes the form
  41. *>
  42. *> A := P*A
  43. *>
  44. *> and when SIDE = 'R', the transformation takes the form
  45. *>
  46. *> A := A*P**T
  47. *>
  48. *> where P is an orthogonal matrix consisting of a sequence of z plane
  49. *> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
  50. *> and P**T is the transpose of P.
  51. *>
  52. *> When DIRECT = 'F' (Forward sequence), then
  53. *>
  54. *> P = P(z-1) * ... * P(2) * P(1)
  55. *>
  56. *> and when DIRECT = 'B' (Backward sequence), then
  57. *>
  58. *> P = P(1) * P(2) * ... * P(z-1)
  59. *>
  60. *> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
  61. *>
  62. *> R(k) = ( c(k) s(k) )
  63. *> = ( -s(k) c(k) ).
  64. *>
  65. *> When PIVOT = 'V' (Variable pivot), the rotation is performed
  66. *> for the plane (k,k+1), i.e., P(k) has the form
  67. *>
  68. *> P(k) = ( 1 )
  69. *> ( ... )
  70. *> ( 1 )
  71. *> ( c(k) s(k) )
  72. *> ( -s(k) c(k) )
  73. *> ( 1 )
  74. *> ( ... )
  75. *> ( 1 )
  76. *>
  77. *> where R(k) appears as a rank-2 modification to the identity matrix in
  78. *> rows and columns k and k+1.
  79. *>
  80. *> When PIVOT = 'T' (Top pivot), the rotation is performed for the
  81. *> plane (1,k+1), so P(k) has the form
  82. *>
  83. *> P(k) = ( c(k) s(k) )
  84. *> ( 1 )
  85. *> ( ... )
  86. *> ( 1 )
  87. *> ( -s(k) c(k) )
  88. *> ( 1 )
  89. *> ( ... )
  90. *> ( 1 )
  91. *>
  92. *> where R(k) appears in rows and columns 1 and k+1.
  93. *>
  94. *> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
  95. *> performed for the plane (k,z), giving P(k) the form
  96. *>
  97. *> P(k) = ( 1 )
  98. *> ( ... )
  99. *> ( 1 )
  100. *> ( c(k) s(k) )
  101. *> ( 1 )
  102. *> ( ... )
  103. *> ( 1 )
  104. *> ( -s(k) c(k) )
  105. *>
  106. *> where R(k) appears in rows and columns k and z. The rotations are
  107. *> performed without ever forming P(k) explicitly.
  108. *> \endverbatim
  109. *
  110. * Arguments:
  111. * ==========
  112. *
  113. *> \param[in] SIDE
  114. *> \verbatim
  115. *> SIDE is CHARACTER*1
  116. *> Specifies whether the plane rotation matrix P is applied to
  117. *> A on the left or the right.
  118. *> = 'L': Left, compute A := P*A
  119. *> = 'R': Right, compute A:= A*P**T
  120. *> \endverbatim
  121. *>
  122. *> \param[in] PIVOT
  123. *> \verbatim
  124. *> PIVOT is CHARACTER*1
  125. *> Specifies the plane for which P(k) is a plane rotation
  126. *> matrix.
  127. *> = 'V': Variable pivot, the plane (k,k+1)
  128. *> = 'T': Top pivot, the plane (1,k+1)
  129. *> = 'B': Bottom pivot, the plane (k,z)
  130. *> \endverbatim
  131. *>
  132. *> \param[in] DIRECT
  133. *> \verbatim
  134. *> DIRECT is CHARACTER*1
  135. *> Specifies whether P is a forward or backward sequence of
  136. *> plane rotations.
  137. *> = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
  138. *> = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
  139. *> \endverbatim
  140. *>
  141. *> \param[in] M
  142. *> \verbatim
  143. *> M is INTEGER
  144. *> The number of rows of the matrix A. If m <= 1, an immediate
  145. *> return is effected.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] N
  149. *> \verbatim
  150. *> N is INTEGER
  151. *> The number of columns of the matrix A. If n <= 1, an
  152. *> immediate return is effected.
  153. *> \endverbatim
  154. *>
  155. *> \param[in] C
  156. *> \verbatim
  157. *> C is DOUBLE PRECISION array, dimension
  158. *> (M-1) if SIDE = 'L'
  159. *> (N-1) if SIDE = 'R'
  160. *> The cosines c(k) of the plane rotations.
  161. *> \endverbatim
  162. *>
  163. *> \param[in] S
  164. *> \verbatim
  165. *> S is DOUBLE PRECISION array, dimension
  166. *> (M-1) if SIDE = 'L'
  167. *> (N-1) if SIDE = 'R'
  168. *> The sines s(k) of the plane rotations. The 2-by-2 plane
  169. *> rotation part of the matrix P(k), R(k), has the form
  170. *> R(k) = ( c(k) s(k) )
  171. *> ( -s(k) c(k) ).
  172. *> \endverbatim
  173. *>
  174. *> \param[in,out] A
  175. *> \verbatim
  176. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  177. *> The M-by-N matrix A. On exit, A is overwritten by P*A if
  178. *> SIDE = 'L' or by A*P**T if SIDE = 'R'.
  179. *> \endverbatim
  180. *>
  181. *> \param[in] LDA
  182. *> \verbatim
  183. *> LDA is INTEGER
  184. *> The leading dimension of the array A. LDA >= max(1,M).
  185. *> \endverbatim
  186. *
  187. * Authors:
  188. * ========
  189. *
  190. *> \author Univ. of Tennessee
  191. *> \author Univ. of California Berkeley
  192. *> \author Univ. of Colorado Denver
  193. *> \author NAG Ltd.
  194. *
  195. *> \ingroup OTHERauxiliary
  196. *
  197. * =====================================================================
  198. SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
  199. *
  200. * -- LAPACK auxiliary routine --
  201. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  202. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  203. *
  204. * .. Scalar Arguments ..
  205. CHARACTER DIRECT, PIVOT, SIDE
  206. INTEGER LDA, M, N
  207. * ..
  208. * .. Array Arguments ..
  209. DOUBLE PRECISION A( LDA, * ), C( * ), S( * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * .. Parameters ..
  215. DOUBLE PRECISION ONE, ZERO
  216. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  217. * ..
  218. * .. Local Scalars ..
  219. INTEGER I, INFO, J
  220. DOUBLE PRECISION CTEMP, STEMP, TEMP
  221. * ..
  222. * .. External Functions ..
  223. LOGICAL LSAME
  224. EXTERNAL LSAME
  225. * ..
  226. * .. External Subroutines ..
  227. EXTERNAL XERBLA
  228. * ..
  229. * .. Intrinsic Functions ..
  230. INTRINSIC MAX
  231. * ..
  232. * .. Executable Statements ..
  233. *
  234. * Test the input parameters
  235. *
  236. INFO = 0
  237. IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
  238. INFO = 1
  239. ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
  240. $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
  241. INFO = 2
  242. ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
  243. $ THEN
  244. INFO = 3
  245. ELSE IF( M.LT.0 ) THEN
  246. INFO = 4
  247. ELSE IF( N.LT.0 ) THEN
  248. INFO = 5
  249. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  250. INFO = 9
  251. END IF
  252. IF( INFO.NE.0 ) THEN
  253. CALL XERBLA( 'DLASR ', INFO )
  254. RETURN
  255. END IF
  256. *
  257. * Quick return if possible
  258. *
  259. IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
  260. $ RETURN
  261. IF( LSAME( SIDE, 'L' ) ) THEN
  262. *
  263. * Form P * A
  264. *
  265. IF( LSAME( PIVOT, 'V' ) ) THEN
  266. IF( LSAME( DIRECT, 'F' ) ) THEN
  267. DO 20 J = 1, M - 1
  268. CTEMP = C( J )
  269. STEMP = S( J )
  270. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  271. DO 10 I = 1, N
  272. TEMP = A( J+1, I )
  273. A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
  274. A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
  275. 10 CONTINUE
  276. END IF
  277. 20 CONTINUE
  278. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  279. DO 40 J = M - 1, 1, -1
  280. CTEMP = C( J )
  281. STEMP = S( J )
  282. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  283. DO 30 I = 1, N
  284. TEMP = A( J+1, I )
  285. A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
  286. A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
  287. 30 CONTINUE
  288. END IF
  289. 40 CONTINUE
  290. END IF
  291. ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
  292. IF( LSAME( DIRECT, 'F' ) ) THEN
  293. DO 60 J = 2, M
  294. CTEMP = C( J-1 )
  295. STEMP = S( J-1 )
  296. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  297. DO 50 I = 1, N
  298. TEMP = A( J, I )
  299. A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
  300. A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
  301. 50 CONTINUE
  302. END IF
  303. 60 CONTINUE
  304. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  305. DO 80 J = M, 2, -1
  306. CTEMP = C( J-1 )
  307. STEMP = S( J-1 )
  308. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  309. DO 70 I = 1, N
  310. TEMP = A( J, I )
  311. A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
  312. A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
  313. 70 CONTINUE
  314. END IF
  315. 80 CONTINUE
  316. END IF
  317. ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
  318. IF( LSAME( DIRECT, 'F' ) ) THEN
  319. DO 100 J = 1, M - 1
  320. CTEMP = C( J )
  321. STEMP = S( J )
  322. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  323. DO 90 I = 1, N
  324. TEMP = A( J, I )
  325. A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
  326. A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  327. 90 CONTINUE
  328. END IF
  329. 100 CONTINUE
  330. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  331. DO 120 J = M - 1, 1, -1
  332. CTEMP = C( J )
  333. STEMP = S( J )
  334. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  335. DO 110 I = 1, N
  336. TEMP = A( J, I )
  337. A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
  338. A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  339. 110 CONTINUE
  340. END IF
  341. 120 CONTINUE
  342. END IF
  343. END IF
  344. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  345. *
  346. * Form A * P**T
  347. *
  348. IF( LSAME( PIVOT, 'V' ) ) THEN
  349. IF( LSAME( DIRECT, 'F' ) ) THEN
  350. DO 140 J = 1, N - 1
  351. CTEMP = C( J )
  352. STEMP = S( J )
  353. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  354. DO 130 I = 1, M
  355. TEMP = A( I, J+1 )
  356. A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
  357. A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  358. 130 CONTINUE
  359. END IF
  360. 140 CONTINUE
  361. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  362. DO 160 J = N - 1, 1, -1
  363. CTEMP = C( J )
  364. STEMP = S( J )
  365. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  366. DO 150 I = 1, M
  367. TEMP = A( I, J+1 )
  368. A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
  369. A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  370. 150 CONTINUE
  371. END IF
  372. 160 CONTINUE
  373. END IF
  374. ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
  375. IF( LSAME( DIRECT, 'F' ) ) THEN
  376. DO 180 J = 2, N
  377. CTEMP = C( J-1 )
  378. STEMP = S( J-1 )
  379. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  380. DO 170 I = 1, M
  381. TEMP = A( I, J )
  382. A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
  383. A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  384. 170 CONTINUE
  385. END IF
  386. 180 CONTINUE
  387. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  388. DO 200 J = N, 2, -1
  389. CTEMP = C( J-1 )
  390. STEMP = S( J-1 )
  391. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  392. DO 190 I = 1, M
  393. TEMP = A( I, J )
  394. A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
  395. A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  396. 190 CONTINUE
  397. END IF
  398. 200 CONTINUE
  399. END IF
  400. ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
  401. IF( LSAME( DIRECT, 'F' ) ) THEN
  402. DO 220 J = 1, N - 1
  403. CTEMP = C( J )
  404. STEMP = S( J )
  405. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  406. DO 210 I = 1, M
  407. TEMP = A( I, J )
  408. A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
  409. A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  410. 210 CONTINUE
  411. END IF
  412. 220 CONTINUE
  413. ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
  414. DO 240 J = N - 1, 1, -1
  415. CTEMP = C( J )
  416. STEMP = S( J )
  417. IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
  418. DO 230 I = 1, M
  419. TEMP = A( I, J )
  420. A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
  421. A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  422. 230 CONTINUE
  423. END IF
  424. 240 CONTINUE
  425. END IF
  426. END IF
  427. END IF
  428. *
  429. RETURN
  430. *
  431. * End of DLASR
  432. *
  433. END