You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd2.f 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. *> \brief \b DLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLASD2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
  22. * LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
  23. * IDXC, IDXQ, COLTYP, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
  27. * DOUBLE PRECISION ALPHA, BETA
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
  31. * $ IDXQ( * )
  32. * DOUBLE PRECISION D( * ), DSIGMA( * ), U( LDU, * ),
  33. * $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
  34. * $ Z( * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> DLASD2 merges the two sets of singular values together into a single
  44. *> sorted set. Then it tries to deflate the size of the problem.
  45. *> There are two ways in which deflation can occur: when two or more
  46. *> singular values are close together or if there is a tiny entry in the
  47. *> Z vector. For each such occurrence the order of the related secular
  48. *> equation problem is reduced by one.
  49. *>
  50. *> DLASD2 is called from DLASD1.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] NL
  57. *> \verbatim
  58. *> NL is INTEGER
  59. *> The row dimension of the upper block. NL >= 1.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NR
  63. *> \verbatim
  64. *> NR is INTEGER
  65. *> The row dimension of the lower block. NR >= 1.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] SQRE
  69. *> \verbatim
  70. *> SQRE is INTEGER
  71. *> = 0: the lower block is an NR-by-NR square matrix.
  72. *> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
  73. *>
  74. *> The bidiagonal matrix has N = NL + NR + 1 rows and
  75. *> M = N + SQRE >= N columns.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] K
  79. *> \verbatim
  80. *> K is INTEGER
  81. *> Contains the dimension of the non-deflated matrix,
  82. *> This is the order of the related secular equation. 1 <= K <=N.
  83. *> \endverbatim
  84. *>
  85. *> \param[in,out] D
  86. *> \verbatim
  87. *> D is DOUBLE PRECISION array, dimension(N)
  88. *> On entry D contains the singular values of the two submatrices
  89. *> to be combined. On exit D contains the trailing (N-K) updated
  90. *> singular values (those which were deflated) sorted into
  91. *> increasing order.
  92. *> \endverbatim
  93. *>
  94. *> \param[out] Z
  95. *> \verbatim
  96. *> Z is DOUBLE PRECISION array, dimension(N)
  97. *> On exit Z contains the updating row vector in the secular
  98. *> equation.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] ALPHA
  102. *> \verbatim
  103. *> ALPHA is DOUBLE PRECISION
  104. *> Contains the diagonal element associated with the added row.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] BETA
  108. *> \verbatim
  109. *> BETA is DOUBLE PRECISION
  110. *> Contains the off-diagonal element associated with the added
  111. *> row.
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] U
  115. *> \verbatim
  116. *> U is DOUBLE PRECISION array, dimension(LDU,N)
  117. *> On entry U contains the left singular vectors of two
  118. *> submatrices in the two square blocks with corners at (1,1),
  119. *> (NL, NL), and (NL+2, NL+2), (N,N).
  120. *> On exit U contains the trailing (N-K) updated left singular
  121. *> vectors (those which were deflated) in its last N-K columns.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDU
  125. *> \verbatim
  126. *> LDU is INTEGER
  127. *> The leading dimension of the array U. LDU >= N.
  128. *> \endverbatim
  129. *>
  130. *> \param[in,out] VT
  131. *> \verbatim
  132. *> VT is DOUBLE PRECISION array, dimension(LDVT,M)
  133. *> On entry VT**T contains the right singular vectors of two
  134. *> submatrices in the two square blocks with corners at (1,1),
  135. *> (NL+1, NL+1), and (NL+2, NL+2), (M,M).
  136. *> On exit VT**T contains the trailing (N-K) updated right singular
  137. *> vectors (those which were deflated) in its last N-K columns.
  138. *> In case SQRE =1, the last row of VT spans the right null
  139. *> space.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LDVT
  143. *> \verbatim
  144. *> LDVT is INTEGER
  145. *> The leading dimension of the array VT. LDVT >= M.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] DSIGMA
  149. *> \verbatim
  150. *> DSIGMA is DOUBLE PRECISION array, dimension (N)
  151. *> Contains a copy of the diagonal elements (K-1 singular values
  152. *> and one zero) in the secular equation.
  153. *> \endverbatim
  154. *>
  155. *> \param[out] U2
  156. *> \verbatim
  157. *> U2 is DOUBLE PRECISION array, dimension(LDU2,N)
  158. *> Contains a copy of the first K-1 left singular vectors which
  159. *> will be used by DLASD3 in a matrix multiply (DGEMM) to solve
  160. *> for the new left singular vectors. U2 is arranged into four
  161. *> blocks. The first block contains a column with 1 at NL+1 and
  162. *> zero everywhere else; the second block contains non-zero
  163. *> entries only at and above NL; the third contains non-zero
  164. *> entries only below NL+1; and the fourth is dense.
  165. *> \endverbatim
  166. *>
  167. *> \param[in] LDU2
  168. *> \verbatim
  169. *> LDU2 is INTEGER
  170. *> The leading dimension of the array U2. LDU2 >= N.
  171. *> \endverbatim
  172. *>
  173. *> \param[out] VT2
  174. *> \verbatim
  175. *> VT2 is DOUBLE PRECISION array, dimension(LDVT2,N)
  176. *> VT2**T contains a copy of the first K right singular vectors
  177. *> which will be used by DLASD3 in a matrix multiply (DGEMM) to
  178. *> solve for the new right singular vectors. VT2 is arranged into
  179. *> three blocks. The first block contains a row that corresponds
  180. *> to the special 0 diagonal element in SIGMA; the second block
  181. *> contains non-zeros only at and before NL +1; the third block
  182. *> contains non-zeros only at and after NL +2.
  183. *> \endverbatim
  184. *>
  185. *> \param[in] LDVT2
  186. *> \verbatim
  187. *> LDVT2 is INTEGER
  188. *> The leading dimension of the array VT2. LDVT2 >= M.
  189. *> \endverbatim
  190. *>
  191. *> \param[out] IDXP
  192. *> \verbatim
  193. *> IDXP is INTEGER array, dimension(N)
  194. *> This will contain the permutation used to place deflated
  195. *> values of D at the end of the array. On output IDXP(2:K)
  196. *> points to the nondeflated D-values and IDXP(K+1:N)
  197. *> points to the deflated singular values.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] IDX
  201. *> \verbatim
  202. *> IDX is INTEGER array, dimension(N)
  203. *> This will contain the permutation used to sort the contents of
  204. *> D into ascending order.
  205. *> \endverbatim
  206. *>
  207. *> \param[out] IDXC
  208. *> \verbatim
  209. *> IDXC is INTEGER array, dimension(N)
  210. *> This will contain the permutation used to arrange the columns
  211. *> of the deflated U matrix into three groups: the first group
  212. *> contains non-zero entries only at and above NL, the second
  213. *> contains non-zero entries only below NL+2, and the third is
  214. *> dense.
  215. *> \endverbatim
  216. *>
  217. *> \param[in,out] IDXQ
  218. *> \verbatim
  219. *> IDXQ is INTEGER array, dimension(N)
  220. *> This contains the permutation which separately sorts the two
  221. *> sub-problems in D into ascending order. Note that entries in
  222. *> the first hlaf of this permutation must first be moved one
  223. *> position backward; and entries in the second half
  224. *> must first have NL+1 added to their values.
  225. *> \endverbatim
  226. *>
  227. *> \param[out] COLTYP
  228. *> \verbatim
  229. *> COLTYP is INTEGER array, dimension(N)
  230. *> As workspace, this will contain a label which will indicate
  231. *> which of the following types a column in the U2 matrix or a
  232. *> row in the VT2 matrix is:
  233. *> 1 : non-zero in the upper half only
  234. *> 2 : non-zero in the lower half only
  235. *> 3 : dense
  236. *> 4 : deflated
  237. *>
  238. *> On exit, it is an array of dimension 4, with COLTYP(I) being
  239. *> the dimension of the I-th type columns.
  240. *> \endverbatim
  241. *>
  242. *> \param[out] INFO
  243. *> \verbatim
  244. *> INFO is INTEGER
  245. *> = 0: successful exit.
  246. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  247. *> \endverbatim
  248. *
  249. * Authors:
  250. * ========
  251. *
  252. *> \author Univ. of Tennessee
  253. *> \author Univ. of California Berkeley
  254. *> \author Univ. of Colorado Denver
  255. *> \author NAG Ltd.
  256. *
  257. *> \ingroup OTHERauxiliary
  258. *
  259. *> \par Contributors:
  260. * ==================
  261. *>
  262. *> Ming Gu and Huan Ren, Computer Science Division, University of
  263. *> California at Berkeley, USA
  264. *>
  265. * =====================================================================
  266. SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
  267. $ LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
  268. $ IDXC, IDXQ, COLTYP, INFO )
  269. *
  270. * -- LAPACK auxiliary routine --
  271. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  272. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  273. *
  274. * .. Scalar Arguments ..
  275. INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
  276. DOUBLE PRECISION ALPHA, BETA
  277. * ..
  278. * .. Array Arguments ..
  279. INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
  280. $ IDXQ( * )
  281. DOUBLE PRECISION D( * ), DSIGMA( * ), U( LDU, * ),
  282. $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
  283. $ Z( * )
  284. * ..
  285. *
  286. * =====================================================================
  287. *
  288. * .. Parameters ..
  289. DOUBLE PRECISION ZERO, ONE, TWO, EIGHT
  290. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
  291. $ EIGHT = 8.0D+0 )
  292. * ..
  293. * .. Local Arrays ..
  294. INTEGER CTOT( 4 ), PSM( 4 )
  295. * ..
  296. * .. Local Scalars ..
  297. INTEGER CT, I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M,
  298. $ N, NLP1, NLP2
  299. DOUBLE PRECISION C, EPS, HLFTOL, S, TAU, TOL, Z1
  300. * ..
  301. * .. External Functions ..
  302. DOUBLE PRECISION DLAMCH, DLAPY2
  303. EXTERNAL DLAMCH, DLAPY2
  304. * ..
  305. * .. External Subroutines ..
  306. EXTERNAL DCOPY, DLACPY, DLAMRG, DLASET, DROT, XERBLA
  307. * ..
  308. * .. Intrinsic Functions ..
  309. INTRINSIC ABS, MAX
  310. * ..
  311. * .. Executable Statements ..
  312. *
  313. * Test the input parameters.
  314. *
  315. INFO = 0
  316. *
  317. IF( NL.LT.1 ) THEN
  318. INFO = -1
  319. ELSE IF( NR.LT.1 ) THEN
  320. INFO = -2
  321. ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
  322. INFO = -3
  323. END IF
  324. *
  325. N = NL + NR + 1
  326. M = N + SQRE
  327. *
  328. IF( LDU.LT.N ) THEN
  329. INFO = -10
  330. ELSE IF( LDVT.LT.M ) THEN
  331. INFO = -12
  332. ELSE IF( LDU2.LT.N ) THEN
  333. INFO = -15
  334. ELSE IF( LDVT2.LT.M ) THEN
  335. INFO = -17
  336. END IF
  337. IF( INFO.NE.0 ) THEN
  338. CALL XERBLA( 'DLASD2', -INFO )
  339. RETURN
  340. END IF
  341. *
  342. NLP1 = NL + 1
  343. NLP2 = NL + 2
  344. *
  345. * Generate the first part of the vector Z; and move the singular
  346. * values in the first part of D one position backward.
  347. *
  348. Z1 = ALPHA*VT( NLP1, NLP1 )
  349. Z( 1 ) = Z1
  350. DO 10 I = NL, 1, -1
  351. Z( I+1 ) = ALPHA*VT( I, NLP1 )
  352. D( I+1 ) = D( I )
  353. IDXQ( I+1 ) = IDXQ( I ) + 1
  354. 10 CONTINUE
  355. *
  356. * Generate the second part of the vector Z.
  357. *
  358. DO 20 I = NLP2, M
  359. Z( I ) = BETA*VT( I, NLP2 )
  360. 20 CONTINUE
  361. *
  362. * Initialize some reference arrays.
  363. *
  364. DO 30 I = 2, NLP1
  365. COLTYP( I ) = 1
  366. 30 CONTINUE
  367. DO 40 I = NLP2, N
  368. COLTYP( I ) = 2
  369. 40 CONTINUE
  370. *
  371. * Sort the singular values into increasing order
  372. *
  373. DO 50 I = NLP2, N
  374. IDXQ( I ) = IDXQ( I ) + NLP1
  375. 50 CONTINUE
  376. *
  377. * DSIGMA, IDXC, IDXC, and the first column of U2
  378. * are used as storage space.
  379. *
  380. DO 60 I = 2, N
  381. DSIGMA( I ) = D( IDXQ( I ) )
  382. U2( I, 1 ) = Z( IDXQ( I ) )
  383. IDXC( I ) = COLTYP( IDXQ( I ) )
  384. 60 CONTINUE
  385. *
  386. CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
  387. *
  388. DO 70 I = 2, N
  389. IDXI = 1 + IDX( I )
  390. D( I ) = DSIGMA( IDXI )
  391. Z( I ) = U2( IDXI, 1 )
  392. COLTYP( I ) = IDXC( IDXI )
  393. 70 CONTINUE
  394. *
  395. * Calculate the allowable deflation tolerance
  396. *
  397. EPS = DLAMCH( 'Epsilon' )
  398. TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
  399. TOL = EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
  400. *
  401. * There are 2 kinds of deflation -- first a value in the z-vector
  402. * is small, second two (or more) singular values are very close
  403. * together (their difference is small).
  404. *
  405. * If the value in the z-vector is small, we simply permute the
  406. * array so that the corresponding singular value is moved to the
  407. * end.
  408. *
  409. * If two values in the D-vector are close, we perform a two-sided
  410. * rotation designed to make one of the corresponding z-vector
  411. * entries zero, and then permute the array so that the deflated
  412. * singular value is moved to the end.
  413. *
  414. * If there are multiple singular values then the problem deflates.
  415. * Here the number of equal singular values are found. As each equal
  416. * singular value is found, an elementary reflector is computed to
  417. * rotate the corresponding singular subspace so that the
  418. * corresponding components of Z are zero in this new basis.
  419. *
  420. K = 1
  421. K2 = N + 1
  422. DO 80 J = 2, N
  423. IF( ABS( Z( J ) ).LE.TOL ) THEN
  424. *
  425. * Deflate due to small z component.
  426. *
  427. K2 = K2 - 1
  428. IDXP( K2 ) = J
  429. COLTYP( J ) = 4
  430. IF( J.EQ.N )
  431. $ GO TO 120
  432. ELSE
  433. JPREV = J
  434. GO TO 90
  435. END IF
  436. 80 CONTINUE
  437. 90 CONTINUE
  438. J = JPREV
  439. 100 CONTINUE
  440. J = J + 1
  441. IF( J.GT.N )
  442. $ GO TO 110
  443. IF( ABS( Z( J ) ).LE.TOL ) THEN
  444. *
  445. * Deflate due to small z component.
  446. *
  447. K2 = K2 - 1
  448. IDXP( K2 ) = J
  449. COLTYP( J ) = 4
  450. ELSE
  451. *
  452. * Check if singular values are close enough to allow deflation.
  453. *
  454. IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
  455. *
  456. * Deflation is possible.
  457. *
  458. S = Z( JPREV )
  459. C = Z( J )
  460. *
  461. * Find sqrt(a**2+b**2) without overflow or
  462. * destructive underflow.
  463. *
  464. TAU = DLAPY2( C, S )
  465. C = C / TAU
  466. S = -S / TAU
  467. Z( J ) = TAU
  468. Z( JPREV ) = ZERO
  469. *
  470. * Apply back the Givens rotation to the left and right
  471. * singular vector matrices.
  472. *
  473. IDXJP = IDXQ( IDX( JPREV )+1 )
  474. IDXJ = IDXQ( IDX( J )+1 )
  475. IF( IDXJP.LE.NLP1 ) THEN
  476. IDXJP = IDXJP - 1
  477. END IF
  478. IF( IDXJ.LE.NLP1 ) THEN
  479. IDXJ = IDXJ - 1
  480. END IF
  481. CALL DROT( N, U( 1, IDXJP ), 1, U( 1, IDXJ ), 1, C, S )
  482. CALL DROT( M, VT( IDXJP, 1 ), LDVT, VT( IDXJ, 1 ), LDVT, C,
  483. $ S )
  484. IF( COLTYP( J ).NE.COLTYP( JPREV ) ) THEN
  485. COLTYP( J ) = 3
  486. END IF
  487. COLTYP( JPREV ) = 4
  488. K2 = K2 - 1
  489. IDXP( K2 ) = JPREV
  490. JPREV = J
  491. ELSE
  492. K = K + 1
  493. U2( K, 1 ) = Z( JPREV )
  494. DSIGMA( K ) = D( JPREV )
  495. IDXP( K ) = JPREV
  496. JPREV = J
  497. END IF
  498. END IF
  499. GO TO 100
  500. 110 CONTINUE
  501. *
  502. * Record the last singular value.
  503. *
  504. K = K + 1
  505. U2( K, 1 ) = Z( JPREV )
  506. DSIGMA( K ) = D( JPREV )
  507. IDXP( K ) = JPREV
  508. *
  509. 120 CONTINUE
  510. *
  511. * Count up the total number of the various types of columns, then
  512. * form a permutation which positions the four column types into
  513. * four groups of uniform structure (although one or more of these
  514. * groups may be empty).
  515. *
  516. DO 130 J = 1, 4
  517. CTOT( J ) = 0
  518. 130 CONTINUE
  519. DO 140 J = 2, N
  520. CT = COLTYP( J )
  521. CTOT( CT ) = CTOT( CT ) + 1
  522. 140 CONTINUE
  523. *
  524. * PSM(*) = Position in SubMatrix (of types 1 through 4)
  525. *
  526. PSM( 1 ) = 2
  527. PSM( 2 ) = 2 + CTOT( 1 )
  528. PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
  529. PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
  530. *
  531. * Fill out the IDXC array so that the permutation which it induces
  532. * will place all type-1 columns first, all type-2 columns next,
  533. * then all type-3's, and finally all type-4's, starting from the
  534. * second column. This applies similarly to the rows of VT.
  535. *
  536. DO 150 J = 2, N
  537. JP = IDXP( J )
  538. CT = COLTYP( JP )
  539. IDXC( PSM( CT ) ) = J
  540. PSM( CT ) = PSM( CT ) + 1
  541. 150 CONTINUE
  542. *
  543. * Sort the singular values and corresponding singular vectors into
  544. * DSIGMA, U2, and VT2 respectively. The singular values/vectors
  545. * which were not deflated go into the first K slots of DSIGMA, U2,
  546. * and VT2 respectively, while those which were deflated go into the
  547. * last N - K slots, except that the first column/row will be treated
  548. * separately.
  549. *
  550. DO 160 J = 2, N
  551. JP = IDXP( J )
  552. DSIGMA( J ) = D( JP )
  553. IDXJ = IDXQ( IDX( IDXP( IDXC( J ) ) )+1 )
  554. IF( IDXJ.LE.NLP1 ) THEN
  555. IDXJ = IDXJ - 1
  556. END IF
  557. CALL DCOPY( N, U( 1, IDXJ ), 1, U2( 1, J ), 1 )
  558. CALL DCOPY( M, VT( IDXJ, 1 ), LDVT, VT2( J, 1 ), LDVT2 )
  559. 160 CONTINUE
  560. *
  561. * Determine DSIGMA(1), DSIGMA(2) and Z(1)
  562. *
  563. DSIGMA( 1 ) = ZERO
  564. HLFTOL = TOL / TWO
  565. IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
  566. $ DSIGMA( 2 ) = HLFTOL
  567. IF( M.GT.N ) THEN
  568. Z( 1 ) = DLAPY2( Z1, Z( M ) )
  569. IF( Z( 1 ).LE.TOL ) THEN
  570. C = ONE
  571. S = ZERO
  572. Z( 1 ) = TOL
  573. ELSE
  574. C = Z1 / Z( 1 )
  575. S = Z( M ) / Z( 1 )
  576. END IF
  577. ELSE
  578. IF( ABS( Z1 ).LE.TOL ) THEN
  579. Z( 1 ) = TOL
  580. ELSE
  581. Z( 1 ) = Z1
  582. END IF
  583. END IF
  584. *
  585. * Move the rest of the updating row to Z.
  586. *
  587. CALL DCOPY( K-1, U2( 2, 1 ), 1, Z( 2 ), 1 )
  588. *
  589. * Determine the first column of U2, the first row of VT2 and the
  590. * last row of VT.
  591. *
  592. CALL DLASET( 'A', N, 1, ZERO, ZERO, U2, LDU2 )
  593. U2( NLP1, 1 ) = ONE
  594. IF( M.GT.N ) THEN
  595. DO 170 I = 1, NLP1
  596. VT( M, I ) = -S*VT( NLP1, I )
  597. VT2( 1, I ) = C*VT( NLP1, I )
  598. 170 CONTINUE
  599. DO 180 I = NLP2, M
  600. VT2( 1, I ) = S*VT( M, I )
  601. VT( M, I ) = C*VT( M, I )
  602. 180 CONTINUE
  603. ELSE
  604. CALL DCOPY( M, VT( NLP1, 1 ), LDVT, VT2( 1, 1 ), LDVT2 )
  605. END IF
  606. IF( M.GT.N ) THEN
  607. CALL DCOPY( M, VT( M, 1 ), LDVT, VT2( M, 1 ), LDVT2 )
  608. END IF
  609. *
  610. * The deflated singular values and their corresponding vectors go
  611. * into the back of D, U, and V respectively.
  612. *
  613. IF( N.GT.K ) THEN
  614. CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
  615. CALL DLACPY( 'A', N, N-K, U2( 1, K+1 ), LDU2, U( 1, K+1 ),
  616. $ LDU )
  617. CALL DLACPY( 'A', N-K, M, VT2( K+1, 1 ), LDVT2, VT( K+1, 1 ),
  618. $ LDVT )
  619. END IF
  620. *
  621. * Copy CTOT into COLTYP for referencing in DLASD3.
  622. *
  623. DO 190 J = 1, 4
  624. COLTYP( J ) = CTOT( J )
  625. 190 CONTINUE
  626. *
  627. RETURN
  628. *
  629. * End of DLASD2
  630. *
  631. END