You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd1.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. *> \brief \b DLASD1 computes the SVD of an upper bidiagonal matrix B of the specified size. Used by sbdsdc.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLASD1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
  22. * IDXQ, IWORK, WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDU, LDVT, NL, NR, SQRE
  26. * DOUBLE PRECISION ALPHA, BETA
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IDXQ( * ), IWORK( * )
  30. * DOUBLE PRECISION D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
  40. *> where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
  41. *>
  42. *> A related subroutine DLASD7 handles the case in which the singular
  43. *> values (and the singular vectors in factored form) are desired.
  44. *>
  45. *> DLASD1 computes the SVD as follows:
  46. *>
  47. *> ( D1(in) 0 0 0 )
  48. *> B = U(in) * ( Z1**T a Z2**T b ) * VT(in)
  49. *> ( 0 0 D2(in) 0 )
  50. *>
  51. *> = U(out) * ( D(out) 0) * VT(out)
  52. *>
  53. *> where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M
  54. *> with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
  55. *> elsewhere; and the entry b is empty if SQRE = 0.
  56. *>
  57. *> The left singular vectors of the original matrix are stored in U, and
  58. *> the transpose of the right singular vectors are stored in VT, and the
  59. *> singular values are in D. The algorithm consists of three stages:
  60. *>
  61. *> The first stage consists of deflating the size of the problem
  62. *> when there are multiple singular values or when there are zeros in
  63. *> the Z vector. For each such occurrence the dimension of the
  64. *> secular equation problem is reduced by one. This stage is
  65. *> performed by the routine DLASD2.
  66. *>
  67. *> The second stage consists of calculating the updated
  68. *> singular values. This is done by finding the square roots of the
  69. *> roots of the secular equation via the routine DLASD4 (as called
  70. *> by DLASD3). This routine also calculates the singular vectors of
  71. *> the current problem.
  72. *>
  73. *> The final stage consists of computing the updated singular vectors
  74. *> directly using the updated singular values. The singular vectors
  75. *> for the current problem are multiplied with the singular vectors
  76. *> from the overall problem.
  77. *> \endverbatim
  78. *
  79. * Arguments:
  80. * ==========
  81. *
  82. *> \param[in] NL
  83. *> \verbatim
  84. *> NL is INTEGER
  85. *> The row dimension of the upper block. NL >= 1.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] NR
  89. *> \verbatim
  90. *> NR is INTEGER
  91. *> The row dimension of the lower block. NR >= 1.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] SQRE
  95. *> \verbatim
  96. *> SQRE is INTEGER
  97. *> = 0: the lower block is an NR-by-NR square matrix.
  98. *> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
  99. *>
  100. *> The bidiagonal matrix has row dimension N = NL + NR + 1,
  101. *> and column dimension M = N + SQRE.
  102. *> \endverbatim
  103. *>
  104. *> \param[in,out] D
  105. *> \verbatim
  106. *> D is DOUBLE PRECISION array,
  107. *> dimension (N = NL+NR+1).
  108. *> On entry D(1:NL,1:NL) contains the singular values of the
  109. *> upper block; and D(NL+2:N) contains the singular values of
  110. *> the lower block. On exit D(1:N) contains the singular values
  111. *> of the modified matrix.
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] ALPHA
  115. *> \verbatim
  116. *> ALPHA is DOUBLE PRECISION
  117. *> Contains the diagonal element associated with the added row.
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] BETA
  121. *> \verbatim
  122. *> BETA is DOUBLE PRECISION
  123. *> Contains the off-diagonal element associated with the added
  124. *> row.
  125. *> \endverbatim
  126. *>
  127. *> \param[in,out] U
  128. *> \verbatim
  129. *> U is DOUBLE PRECISION array, dimension(LDU,N)
  130. *> On entry U(1:NL, 1:NL) contains the left singular vectors of
  131. *> the upper block; U(NL+2:N, NL+2:N) contains the left singular
  132. *> vectors of the lower block. On exit U contains the left
  133. *> singular vectors of the bidiagonal matrix.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LDU
  137. *> \verbatim
  138. *> LDU is INTEGER
  139. *> The leading dimension of the array U. LDU >= max( 1, N ).
  140. *> \endverbatim
  141. *>
  142. *> \param[in,out] VT
  143. *> \verbatim
  144. *> VT is DOUBLE PRECISION array, dimension(LDVT,M)
  145. *> where M = N + SQRE.
  146. *> On entry VT(1:NL+1, 1:NL+1)**T contains the right singular
  147. *> vectors of the upper block; VT(NL+2:M, NL+2:M)**T contains
  148. *> the right singular vectors of the lower block. On exit
  149. *> VT**T contains the right singular vectors of the
  150. *> bidiagonal matrix.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] LDVT
  154. *> \verbatim
  155. *> LDVT is INTEGER
  156. *> The leading dimension of the array VT. LDVT >= max( 1, M ).
  157. *> \endverbatim
  158. *>
  159. *> \param[in,out] IDXQ
  160. *> \verbatim
  161. *> IDXQ is INTEGER array, dimension(N)
  162. *> This contains the permutation which will reintegrate the
  163. *> subproblem just solved back into sorted order, i.e.
  164. *> D( IDXQ( I = 1, N ) ) will be in ascending order.
  165. *> \endverbatim
  166. *>
  167. *> \param[out] IWORK
  168. *> \verbatim
  169. *> IWORK is INTEGER array, dimension( 4 * N )
  170. *> \endverbatim
  171. *>
  172. *> \param[out] WORK
  173. *> \verbatim
  174. *> WORK is DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
  175. *> \endverbatim
  176. *>
  177. *> \param[out] INFO
  178. *> \verbatim
  179. *> INFO is INTEGER
  180. *> = 0: successful exit.
  181. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  182. *> > 0: if INFO = 1, a singular value did not converge
  183. *> \endverbatim
  184. *
  185. * Authors:
  186. * ========
  187. *
  188. *> \author Univ. of Tennessee
  189. *> \author Univ. of California Berkeley
  190. *> \author Univ. of Colorado Denver
  191. *> \author NAG Ltd.
  192. *
  193. *> \ingroup OTHERauxiliary
  194. *
  195. *> \par Contributors:
  196. * ==================
  197. *>
  198. *> Ming Gu and Huan Ren, Computer Science Division, University of
  199. *> California at Berkeley, USA
  200. *>
  201. * =====================================================================
  202. SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
  203. $ IDXQ, IWORK, WORK, INFO )
  204. *
  205. * -- LAPACK auxiliary routine --
  206. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  207. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  208. *
  209. * .. Scalar Arguments ..
  210. INTEGER INFO, LDU, LDVT, NL, NR, SQRE
  211. DOUBLE PRECISION ALPHA, BETA
  212. * ..
  213. * .. Array Arguments ..
  214. INTEGER IDXQ( * ), IWORK( * )
  215. DOUBLE PRECISION D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
  216. * ..
  217. *
  218. * =====================================================================
  219. *
  220. * .. Parameters ..
  221. *
  222. DOUBLE PRECISION ONE, ZERO
  223. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  224. * ..
  225. * .. Local Scalars ..
  226. INTEGER COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2,
  227. $ IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2
  228. DOUBLE PRECISION ORGNRM
  229. * ..
  230. * .. External Subroutines ..
  231. EXTERNAL DLAMRG, DLASCL, DLASD2, DLASD3, XERBLA
  232. * ..
  233. * .. Intrinsic Functions ..
  234. INTRINSIC ABS, MAX
  235. * ..
  236. * .. Executable Statements ..
  237. *
  238. * Test the input parameters.
  239. *
  240. INFO = 0
  241. *
  242. IF( NL.LT.1 ) THEN
  243. INFO = -1
  244. ELSE IF( NR.LT.1 ) THEN
  245. INFO = -2
  246. ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  247. INFO = -3
  248. END IF
  249. IF( INFO.NE.0 ) THEN
  250. CALL XERBLA( 'DLASD1', -INFO )
  251. RETURN
  252. END IF
  253. *
  254. N = NL + NR + 1
  255. M = N + SQRE
  256. *
  257. * The following values are for bookkeeping purposes only. They are
  258. * integer pointers which indicate the portion of the workspace
  259. * used by a particular array in DLASD2 and DLASD3.
  260. *
  261. LDU2 = N
  262. LDVT2 = M
  263. *
  264. IZ = 1
  265. ISIGMA = IZ + M
  266. IU2 = ISIGMA + N
  267. IVT2 = IU2 + LDU2*N
  268. IQ = IVT2 + LDVT2*M
  269. *
  270. IDX = 1
  271. IDXC = IDX + N
  272. COLTYP = IDXC + N
  273. IDXP = COLTYP + N
  274. *
  275. * Scale.
  276. *
  277. ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
  278. D( NL+1 ) = ZERO
  279. DO 10 I = 1, N
  280. IF( ABS( D( I ) ).GT.ORGNRM ) THEN
  281. ORGNRM = ABS( D( I ) )
  282. END IF
  283. 10 CONTINUE
  284. CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  285. ALPHA = ALPHA / ORGNRM
  286. BETA = BETA / ORGNRM
  287. *
  288. * Deflate singular values.
  289. *
  290. CALL DLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU,
  291. $ VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2,
  292. $ WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ),
  293. $ IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO )
  294. *
  295. * Solve Secular Equation and update singular vectors.
  296. *
  297. LDQ = K
  298. CALL DLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ),
  299. $ U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ),
  300. $ LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ),
  301. $ INFO )
  302. *
  303. * Report the convergence failure.
  304. *
  305. IF( INFO.NE.0 ) THEN
  306. RETURN
  307. END IF
  308. *
  309. * Unscale.
  310. *
  311. CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  312. *
  313. * Prepare the IDXQ sorting permutation.
  314. *
  315. N1 = K
  316. N2 = N - K
  317. CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
  318. *
  319. RETURN
  320. *
  321. * End of DLASD1
  322. *
  323. END