You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggev.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. *> \brief <b> DGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGGEV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggev.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggev.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggev.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
  22. * BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBVL, JOBVR
  26. * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  30. * $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
  31. * $ VR( LDVR, * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
  41. *> the generalized eigenvalues, and optionally, the left and/or right
  42. *> generalized eigenvectors.
  43. *>
  44. *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
  45. *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
  46. *> singular. It is usually represented as the pair (alpha,beta), as
  47. *> there is a reasonable interpretation for beta=0, and even for both
  48. *> being zero.
  49. *>
  50. *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
  51. *> of (A,B) satisfies
  52. *>
  53. *> A * v(j) = lambda(j) * B * v(j).
  54. *>
  55. *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
  56. *> of (A,B) satisfies
  57. *>
  58. *> u(j)**H * A = lambda(j) * u(j)**H * B .
  59. *>
  60. *> where u(j)**H is the conjugate-transpose of u(j).
  61. *>
  62. *> \endverbatim
  63. *
  64. * Arguments:
  65. * ==========
  66. *
  67. *> \param[in] JOBVL
  68. *> \verbatim
  69. *> JOBVL is CHARACTER*1
  70. *> = 'N': do not compute the left generalized eigenvectors;
  71. *> = 'V': compute the left generalized eigenvectors.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] JOBVR
  75. *> \verbatim
  76. *> JOBVR is CHARACTER*1
  77. *> = 'N': do not compute the right generalized eigenvectors;
  78. *> = 'V': compute the right generalized eigenvectors.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] N
  82. *> \verbatim
  83. *> N is INTEGER
  84. *> The order of the matrices A, B, VL, and VR. N >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] A
  88. *> \verbatim
  89. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  90. *> On entry, the matrix A in the pair (A,B).
  91. *> On exit, A has been overwritten.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDA
  95. *> \verbatim
  96. *> LDA is INTEGER
  97. *> The leading dimension of A. LDA >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[in,out] B
  101. *> \verbatim
  102. *> B is DOUBLE PRECISION array, dimension (LDB, N)
  103. *> On entry, the matrix B in the pair (A,B).
  104. *> On exit, B has been overwritten.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDB
  108. *> \verbatim
  109. *> LDB is INTEGER
  110. *> The leading dimension of B. LDB >= max(1,N).
  111. *> \endverbatim
  112. *>
  113. *> \param[out] ALPHAR
  114. *> \verbatim
  115. *> ALPHAR is DOUBLE PRECISION array, dimension (N)
  116. *> \endverbatim
  117. *>
  118. *> \param[out] ALPHAI
  119. *> \verbatim
  120. *> ALPHAI is DOUBLE PRECISION array, dimension (N)
  121. *> \endverbatim
  122. *>
  123. *> \param[out] BETA
  124. *> \verbatim
  125. *> BETA is DOUBLE PRECISION array, dimension (N)
  126. *> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  127. *> be the generalized eigenvalues. If ALPHAI(j) is zero, then
  128. *> the j-th eigenvalue is real; if positive, then the j-th and
  129. *> (j+1)-st eigenvalues are a complex conjugate pair, with
  130. *> ALPHAI(j+1) negative.
  131. *>
  132. *> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
  133. *> may easily over- or underflow, and BETA(j) may even be zero.
  134. *> Thus, the user should avoid naively computing the ratio
  135. *> alpha/beta. However, ALPHAR and ALPHAI will be always less
  136. *> than and usually comparable with norm(A) in magnitude, and
  137. *> BETA always less than and usually comparable with norm(B).
  138. *> \endverbatim
  139. *>
  140. *> \param[out] VL
  141. *> \verbatim
  142. *> VL is DOUBLE PRECISION array, dimension (LDVL,N)
  143. *> If JOBVL = 'V', the left eigenvectors u(j) are stored one
  144. *> after another in the columns of VL, in the same order as
  145. *> their eigenvalues. If the j-th eigenvalue is real, then
  146. *> u(j) = VL(:,j), the j-th column of VL. If the j-th and
  147. *> (j+1)-th eigenvalues form a complex conjugate pair, then
  148. *> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
  149. *> Each eigenvector is scaled so the largest component has
  150. *> abs(real part)+abs(imag. part)=1.
  151. *> Not referenced if JOBVL = 'N'.
  152. *> \endverbatim
  153. *>
  154. *> \param[in] LDVL
  155. *> \verbatim
  156. *> LDVL is INTEGER
  157. *> The leading dimension of the matrix VL. LDVL >= 1, and
  158. *> if JOBVL = 'V', LDVL >= N.
  159. *> \endverbatim
  160. *>
  161. *> \param[out] VR
  162. *> \verbatim
  163. *> VR is DOUBLE PRECISION array, dimension (LDVR,N)
  164. *> If JOBVR = 'V', the right eigenvectors v(j) are stored one
  165. *> after another in the columns of VR, in the same order as
  166. *> their eigenvalues. If the j-th eigenvalue is real, then
  167. *> v(j) = VR(:,j), the j-th column of VR. If the j-th and
  168. *> (j+1)-th eigenvalues form a complex conjugate pair, then
  169. *> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
  170. *> Each eigenvector is scaled so the largest component has
  171. *> abs(real part)+abs(imag. part)=1.
  172. *> Not referenced if JOBVR = 'N'.
  173. *> \endverbatim
  174. *>
  175. *> \param[in] LDVR
  176. *> \verbatim
  177. *> LDVR is INTEGER
  178. *> The leading dimension of the matrix VR. LDVR >= 1, and
  179. *> if JOBVR = 'V', LDVR >= N.
  180. *> \endverbatim
  181. *>
  182. *> \param[out] WORK
  183. *> \verbatim
  184. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  185. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  186. *> \endverbatim
  187. *>
  188. *> \param[in] LWORK
  189. *> \verbatim
  190. *> LWORK is INTEGER
  191. *> The dimension of the array WORK. LWORK >= max(1,8*N).
  192. *> For good performance, LWORK must generally be larger.
  193. *>
  194. *> If LWORK = -1, then a workspace query is assumed; the routine
  195. *> only calculates the optimal size of the WORK array, returns
  196. *> this value as the first entry of the WORK array, and no error
  197. *> message related to LWORK is issued by XERBLA.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] INFO
  201. *> \verbatim
  202. *> INFO is INTEGER
  203. *> = 0: successful exit
  204. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  205. *> = 1,...,N:
  206. *> The QZ iteration failed. No eigenvectors have been
  207. *> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
  208. *> should be correct for j=INFO+1,...,N.
  209. *> > N: =N+1: other than QZ iteration failed in DHGEQZ.
  210. *> =N+2: error return from DTGEVC.
  211. *> \endverbatim
  212. *
  213. * Authors:
  214. * ========
  215. *
  216. *> \author Univ. of Tennessee
  217. *> \author Univ. of California Berkeley
  218. *> \author Univ. of Colorado Denver
  219. *> \author NAG Ltd.
  220. *
  221. *> \ingroup doubleGEeigen
  222. *
  223. * =====================================================================
  224. SUBROUTINE DGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
  225. $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
  226. *
  227. * -- LAPACK driver routine --
  228. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  229. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  230. *
  231. * .. Scalar Arguments ..
  232. CHARACTER JOBVL, JOBVR
  233. INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  234. * ..
  235. * .. Array Arguments ..
  236. DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  237. $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
  238. $ VR( LDVR, * ), WORK( * )
  239. * ..
  240. *
  241. * =====================================================================
  242. *
  243. * .. Parameters ..
  244. DOUBLE PRECISION ZERO, ONE
  245. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  246. * ..
  247. * .. Local Scalars ..
  248. LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
  249. CHARACTER CHTEMP
  250. INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
  251. $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, MAXWRK,
  252. $ MINWRK
  253. DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  254. $ SMLNUM, TEMP
  255. * ..
  256. * .. Local Arrays ..
  257. LOGICAL LDUMMA( 1 )
  258. * ..
  259. * .. External Subroutines ..
  260. EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
  261. $ DLACPY,DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
  262. $ XERBLA
  263. * ..
  264. * .. External Functions ..
  265. LOGICAL LSAME
  266. INTEGER ILAENV
  267. DOUBLE PRECISION DLAMCH, DLANGE
  268. EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
  269. * ..
  270. * .. Intrinsic Functions ..
  271. INTRINSIC ABS, MAX, SQRT
  272. * ..
  273. * .. Executable Statements ..
  274. *
  275. * Decode the input arguments
  276. *
  277. IF( LSAME( JOBVL, 'N' ) ) THEN
  278. IJOBVL = 1
  279. ILVL = .FALSE.
  280. ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  281. IJOBVL = 2
  282. ILVL = .TRUE.
  283. ELSE
  284. IJOBVL = -1
  285. ILVL = .FALSE.
  286. END IF
  287. *
  288. IF( LSAME( JOBVR, 'N' ) ) THEN
  289. IJOBVR = 1
  290. ILVR = .FALSE.
  291. ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  292. IJOBVR = 2
  293. ILVR = .TRUE.
  294. ELSE
  295. IJOBVR = -1
  296. ILVR = .FALSE.
  297. END IF
  298. ILV = ILVL .OR. ILVR
  299. *
  300. * Test the input arguments
  301. *
  302. INFO = 0
  303. LQUERY = ( LWORK.EQ.-1 )
  304. IF( IJOBVL.LE.0 ) THEN
  305. INFO = -1
  306. ELSE IF( IJOBVR.LE.0 ) THEN
  307. INFO = -2
  308. ELSE IF( N.LT.0 ) THEN
  309. INFO = -3
  310. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  311. INFO = -5
  312. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  313. INFO = -7
  314. ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  315. INFO = -12
  316. ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  317. INFO = -14
  318. END IF
  319. *
  320. * Compute workspace
  321. * (Note: Comments in the code beginning "Workspace:" describe the
  322. * minimal amount of workspace needed at that point in the code,
  323. * as well as the preferred amount for good performance.
  324. * NB refers to the optimal block size for the immediately
  325. * following subroutine, as returned by ILAENV. The workspace is
  326. * computed assuming ILO = 1 and IHI = N, the worst case.)
  327. *
  328. IF( INFO.EQ.0 ) THEN
  329. MINWRK = MAX( 1, 8*N )
  330. MAXWRK = MAX( 1, N*( 7 +
  331. $ ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) ) )
  332. MAXWRK = MAX( MAXWRK, N*( 7 +
  333. $ ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) ) )
  334. IF( ILVL ) THEN
  335. MAXWRK = MAX( MAXWRK, N*( 7 +
  336. $ ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) ) )
  337. END IF
  338. WORK( 1 ) = MAXWRK
  339. *
  340. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
  341. $ INFO = -16
  342. END IF
  343. *
  344. IF( INFO.NE.0 ) THEN
  345. CALL XERBLA( 'DGGEV ', -INFO )
  346. RETURN
  347. ELSE IF( LQUERY ) THEN
  348. RETURN
  349. END IF
  350. *
  351. * Quick return if possible
  352. *
  353. IF( N.EQ.0 )
  354. $ RETURN
  355. *
  356. * Get machine constants
  357. *
  358. EPS = DLAMCH( 'P' )
  359. SMLNUM = DLAMCH( 'S' )
  360. BIGNUM = ONE / SMLNUM
  361. CALL DLABAD( SMLNUM, BIGNUM )
  362. SMLNUM = SQRT( SMLNUM ) / EPS
  363. BIGNUM = ONE / SMLNUM
  364. *
  365. * Scale A if max element outside range [SMLNUM,BIGNUM]
  366. *
  367. ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  368. ILASCL = .FALSE.
  369. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  370. ANRMTO = SMLNUM
  371. ILASCL = .TRUE.
  372. ELSE IF( ANRM.GT.BIGNUM ) THEN
  373. ANRMTO = BIGNUM
  374. ILASCL = .TRUE.
  375. END IF
  376. IF( ILASCL )
  377. $ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  378. *
  379. * Scale B if max element outside range [SMLNUM,BIGNUM]
  380. *
  381. BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  382. ILBSCL = .FALSE.
  383. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  384. BNRMTO = SMLNUM
  385. ILBSCL = .TRUE.
  386. ELSE IF( BNRM.GT.BIGNUM ) THEN
  387. BNRMTO = BIGNUM
  388. ILBSCL = .TRUE.
  389. END IF
  390. IF( ILBSCL )
  391. $ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  392. *
  393. * Permute the matrices A, B to isolate eigenvalues if possible
  394. * (Workspace: need 6*N)
  395. *
  396. ILEFT = 1
  397. IRIGHT = N + 1
  398. IWRK = IRIGHT + N
  399. CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
  400. $ WORK( IRIGHT ), WORK( IWRK ), IERR )
  401. *
  402. * Reduce B to triangular form (QR decomposition of B)
  403. * (Workspace: need N, prefer N*NB)
  404. *
  405. IROWS = IHI + 1 - ILO
  406. IF( ILV ) THEN
  407. ICOLS = N + 1 - ILO
  408. ELSE
  409. ICOLS = IROWS
  410. END IF
  411. ITAU = IWRK
  412. IWRK = ITAU + IROWS
  413. CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  414. $ WORK( IWRK ), LWORK+1-IWRK, IERR )
  415. *
  416. * Apply the orthogonal transformation to matrix A
  417. * (Workspace: need N, prefer N*NB)
  418. *
  419. CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  420. $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  421. $ LWORK+1-IWRK, IERR )
  422. *
  423. * Initialize VL
  424. * (Workspace: need N, prefer N*NB)
  425. *
  426. IF( ILVL ) THEN
  427. CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
  428. IF( IROWS.GT.1 ) THEN
  429. CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  430. $ VL( ILO+1, ILO ), LDVL )
  431. END IF
  432. CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  433. $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  434. END IF
  435. *
  436. * Initialize VR
  437. *
  438. IF( ILVR )
  439. $ CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
  440. *
  441. * Reduce to generalized Hessenberg form
  442. * (Workspace: none needed)
  443. *
  444. IF( ILV ) THEN
  445. *
  446. * Eigenvectors requested -- work on whole matrix.
  447. *
  448. CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  449. $ LDVL, VR, LDVR, IERR )
  450. ELSE
  451. CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  452. $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  453. END IF
  454. *
  455. * Perform QZ algorithm (Compute eigenvalues, and optionally, the
  456. * Schur forms and Schur vectors)
  457. * (Workspace: need N)
  458. *
  459. IWRK = ITAU
  460. IF( ILV ) THEN
  461. CHTEMP = 'S'
  462. ELSE
  463. CHTEMP = 'E'
  464. END IF
  465. CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  466. $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
  467. $ WORK( IWRK ), LWORK+1-IWRK, IERR )
  468. IF( IERR.NE.0 ) THEN
  469. IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  470. INFO = IERR
  471. ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  472. INFO = IERR - N
  473. ELSE
  474. INFO = N + 1
  475. END IF
  476. GO TO 110
  477. END IF
  478. *
  479. * Compute Eigenvectors
  480. * (Workspace: need 6*N)
  481. *
  482. IF( ILV ) THEN
  483. IF( ILVL ) THEN
  484. IF( ILVR ) THEN
  485. CHTEMP = 'B'
  486. ELSE
  487. CHTEMP = 'L'
  488. END IF
  489. ELSE
  490. CHTEMP = 'R'
  491. END IF
  492. CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
  493. $ VR, LDVR, N, IN, WORK( IWRK ), IERR )
  494. IF( IERR.NE.0 ) THEN
  495. INFO = N + 2
  496. GO TO 110
  497. END IF
  498. *
  499. * Undo balancing on VL and VR and normalization
  500. * (Workspace: none needed)
  501. *
  502. IF( ILVL ) THEN
  503. CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
  504. $ WORK( IRIGHT ), N, VL, LDVL, IERR )
  505. DO 50 JC = 1, N
  506. IF( ALPHAI( JC ).LT.ZERO )
  507. $ GO TO 50
  508. TEMP = ZERO
  509. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  510. DO 10 JR = 1, N
  511. TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
  512. 10 CONTINUE
  513. ELSE
  514. DO 20 JR = 1, N
  515. TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
  516. $ ABS( VL( JR, JC+1 ) ) )
  517. 20 CONTINUE
  518. END IF
  519. IF( TEMP.LT.SMLNUM )
  520. $ GO TO 50
  521. TEMP = ONE / TEMP
  522. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  523. DO 30 JR = 1, N
  524. VL( JR, JC ) = VL( JR, JC )*TEMP
  525. 30 CONTINUE
  526. ELSE
  527. DO 40 JR = 1, N
  528. VL( JR, JC ) = VL( JR, JC )*TEMP
  529. VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
  530. 40 CONTINUE
  531. END IF
  532. 50 CONTINUE
  533. END IF
  534. IF( ILVR ) THEN
  535. CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
  536. $ WORK( IRIGHT ), N, VR, LDVR, IERR )
  537. DO 100 JC = 1, N
  538. IF( ALPHAI( JC ).LT.ZERO )
  539. $ GO TO 100
  540. TEMP = ZERO
  541. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  542. DO 60 JR = 1, N
  543. TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
  544. 60 CONTINUE
  545. ELSE
  546. DO 70 JR = 1, N
  547. TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
  548. $ ABS( VR( JR, JC+1 ) ) )
  549. 70 CONTINUE
  550. END IF
  551. IF( TEMP.LT.SMLNUM )
  552. $ GO TO 100
  553. TEMP = ONE / TEMP
  554. IF( ALPHAI( JC ).EQ.ZERO ) THEN
  555. DO 80 JR = 1, N
  556. VR( JR, JC ) = VR( JR, JC )*TEMP
  557. 80 CONTINUE
  558. ELSE
  559. DO 90 JR = 1, N
  560. VR( JR, JC ) = VR( JR, JC )*TEMP
  561. VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
  562. 90 CONTINUE
  563. END IF
  564. 100 CONTINUE
  565. END IF
  566. *
  567. * End of eigenvector calculation
  568. *
  569. END IF
  570. *
  571. * Undo scaling if necessary
  572. *
  573. 110 CONTINUE
  574. *
  575. IF( ILASCL ) THEN
  576. CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
  577. CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
  578. END IF
  579. *
  580. IF( ILBSCL ) THEN
  581. CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  582. END IF
  583. *
  584. WORK( 1 ) = MAXWRK
  585. RETURN
  586. *
  587. * End of DGGEV
  588. *
  589. END