You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqr3.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. *> \brief \b CLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLAQR3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  22. * IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
  23. * NV, WV, LDWV, WORK, LWORK )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  27. * $ LDZ, LWORK, N, ND, NH, NS, NV, NW
  28. * LOGICAL WANTT, WANTZ
  29. * ..
  30. * .. Array Arguments ..
  31. * COMPLEX H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
  32. * $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> Aggressive early deflation:
  42. *>
  43. *> CLAQR3 accepts as input an upper Hessenberg matrix
  44. *> H and performs an unitary similarity transformation
  45. *> designed to detect and deflate fully converged eigenvalues from
  46. *> a trailing principal submatrix. On output H has been over-
  47. *> written by a new Hessenberg matrix that is a perturbation of
  48. *> an unitary similarity transformation of H. It is to be
  49. *> hoped that the final version of H has many zero subdiagonal
  50. *> entries.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] WANTT
  57. *> \verbatim
  58. *> WANTT is LOGICAL
  59. *> If .TRUE., then the Hessenberg matrix H is fully updated
  60. *> so that the triangular Schur factor may be
  61. *> computed (in cooperation with the calling subroutine).
  62. *> If .FALSE., then only enough of H is updated to preserve
  63. *> the eigenvalues.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] WANTZ
  67. *> \verbatim
  68. *> WANTZ is LOGICAL
  69. *> If .TRUE., then the unitary matrix Z is updated so
  70. *> so that the unitary Schur factor may be computed
  71. *> (in cooperation with the calling subroutine).
  72. *> If .FALSE., then Z is not referenced.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> The order of the matrix H and (if WANTZ is .TRUE.) the
  79. *> order of the unitary matrix Z.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] KTOP
  83. *> \verbatim
  84. *> KTOP is INTEGER
  85. *> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
  86. *> KBOT and KTOP together determine an isolated block
  87. *> along the diagonal of the Hessenberg matrix.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] KBOT
  91. *> \verbatim
  92. *> KBOT is INTEGER
  93. *> It is assumed without a check that either
  94. *> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
  95. *> determine an isolated block along the diagonal of the
  96. *> Hessenberg matrix.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] NW
  100. *> \verbatim
  101. *> NW is INTEGER
  102. *> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
  103. *> \endverbatim
  104. *>
  105. *> \param[in,out] H
  106. *> \verbatim
  107. *> H is COMPLEX array, dimension (LDH,N)
  108. *> On input the initial N-by-N section of H stores the
  109. *> Hessenberg matrix undergoing aggressive early deflation.
  110. *> On output H has been transformed by a unitary
  111. *> similarity transformation, perturbed, and the returned
  112. *> to Hessenberg form that (it is to be hoped) has some
  113. *> zero subdiagonal entries.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDH
  117. *> \verbatim
  118. *> LDH is INTEGER
  119. *> Leading dimension of H just as declared in the calling
  120. *> subroutine. N <= LDH
  121. *> \endverbatim
  122. *>
  123. *> \param[in] ILOZ
  124. *> \verbatim
  125. *> ILOZ is INTEGER
  126. *> \endverbatim
  127. *>
  128. *> \param[in] IHIZ
  129. *> \verbatim
  130. *> IHIZ is INTEGER
  131. *> Specify the rows of Z to which transformations must be
  132. *> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
  133. *> \endverbatim
  134. *>
  135. *> \param[in,out] Z
  136. *> \verbatim
  137. *> Z is COMPLEX array, dimension (LDZ,N)
  138. *> IF WANTZ is .TRUE., then on output, the unitary
  139. *> similarity transformation mentioned above has been
  140. *> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
  141. *> If WANTZ is .FALSE., then Z is unreferenced.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] LDZ
  145. *> \verbatim
  146. *> LDZ is INTEGER
  147. *> The leading dimension of Z just as declared in the
  148. *> calling subroutine. 1 <= LDZ.
  149. *> \endverbatim
  150. *>
  151. *> \param[out] NS
  152. *> \verbatim
  153. *> NS is INTEGER
  154. *> The number of unconverged (ie approximate) eigenvalues
  155. *> returned in SR and SI that may be used as shifts by the
  156. *> calling subroutine.
  157. *> \endverbatim
  158. *>
  159. *> \param[out] ND
  160. *> \verbatim
  161. *> ND is INTEGER
  162. *> The number of converged eigenvalues uncovered by this
  163. *> subroutine.
  164. *> \endverbatim
  165. *>
  166. *> \param[out] SH
  167. *> \verbatim
  168. *> SH is COMPLEX array, dimension (KBOT)
  169. *> On output, approximate eigenvalues that may
  170. *> be used for shifts are stored in SH(KBOT-ND-NS+1)
  171. *> through SR(KBOT-ND). Converged eigenvalues are
  172. *> stored in SH(KBOT-ND+1) through SH(KBOT).
  173. *> \endverbatim
  174. *>
  175. *> \param[out] V
  176. *> \verbatim
  177. *> V is COMPLEX array, dimension (LDV,NW)
  178. *> An NW-by-NW work array.
  179. *> \endverbatim
  180. *>
  181. *> \param[in] LDV
  182. *> \verbatim
  183. *> LDV is INTEGER
  184. *> The leading dimension of V just as declared in the
  185. *> calling subroutine. NW <= LDV
  186. *> \endverbatim
  187. *>
  188. *> \param[in] NH
  189. *> \verbatim
  190. *> NH is INTEGER
  191. *> The number of columns of T. NH >= NW.
  192. *> \endverbatim
  193. *>
  194. *> \param[out] T
  195. *> \verbatim
  196. *> T is COMPLEX array, dimension (LDT,NW)
  197. *> \endverbatim
  198. *>
  199. *> \param[in] LDT
  200. *> \verbatim
  201. *> LDT is INTEGER
  202. *> The leading dimension of T just as declared in the
  203. *> calling subroutine. NW <= LDT
  204. *> \endverbatim
  205. *>
  206. *> \param[in] NV
  207. *> \verbatim
  208. *> NV is INTEGER
  209. *> The number of rows of work array WV available for
  210. *> workspace. NV >= NW.
  211. *> \endverbatim
  212. *>
  213. *> \param[out] WV
  214. *> \verbatim
  215. *> WV is COMPLEX array, dimension (LDWV,NW)
  216. *> \endverbatim
  217. *>
  218. *> \param[in] LDWV
  219. *> \verbatim
  220. *> LDWV is INTEGER
  221. *> The leading dimension of W just as declared in the
  222. *> calling subroutine. NW <= LDV
  223. *> \endverbatim
  224. *>
  225. *> \param[out] WORK
  226. *> \verbatim
  227. *> WORK is COMPLEX array, dimension (LWORK)
  228. *> On exit, WORK(1) is set to an estimate of the optimal value
  229. *> of LWORK for the given values of N, NW, KTOP and KBOT.
  230. *> \endverbatim
  231. *>
  232. *> \param[in] LWORK
  233. *> \verbatim
  234. *> LWORK is INTEGER
  235. *> The dimension of the work array WORK. LWORK = 2*NW
  236. *> suffices, but greater efficiency may result from larger
  237. *> values of LWORK.
  238. *>
  239. *> If LWORK = -1, then a workspace query is assumed; CLAQR3
  240. *> only estimates the optimal workspace size for the given
  241. *> values of N, NW, KTOP and KBOT. The estimate is returned
  242. *> in WORK(1). No error message related to LWORK is issued
  243. *> by XERBLA. Neither H nor Z are accessed.
  244. *> \endverbatim
  245. *
  246. * Authors:
  247. * ========
  248. *
  249. *> \author Univ. of Tennessee
  250. *> \author Univ. of California Berkeley
  251. *> \author Univ. of Colorado Denver
  252. *> \author NAG Ltd.
  253. *
  254. *> \ingroup complexOTHERauxiliary
  255. *
  256. *> \par Contributors:
  257. * ==================
  258. *>
  259. *> Karen Braman and Ralph Byers, Department of Mathematics,
  260. *> University of Kansas, USA
  261. *>
  262. * =====================================================================
  263. SUBROUTINE CLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  264. $ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
  265. $ NV, WV, LDWV, WORK, LWORK )
  266. *
  267. * -- LAPACK auxiliary routine --
  268. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  269. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  270. *
  271. * .. Scalar Arguments ..
  272. INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  273. $ LDZ, LWORK, N, ND, NH, NS, NV, NW
  274. LOGICAL WANTT, WANTZ
  275. * ..
  276. * .. Array Arguments ..
  277. COMPLEX H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
  278. $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
  279. * ..
  280. *
  281. * ================================================================
  282. *
  283. * .. Parameters ..
  284. COMPLEX ZERO, ONE
  285. PARAMETER ( ZERO = ( 0.0e0, 0.0e0 ),
  286. $ ONE = ( 1.0e0, 0.0e0 ) )
  287. REAL RZERO, RONE
  288. PARAMETER ( RZERO = 0.0e0, RONE = 1.0e0 )
  289. * ..
  290. * .. Local Scalars ..
  291. COMPLEX BETA, CDUM, S, TAU
  292. REAL FOO, SAFMAX, SAFMIN, SMLNUM, ULP
  293. INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
  294. $ KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
  295. $ LWKOPT, NMIN
  296. * ..
  297. * .. External Functions ..
  298. REAL SLAMCH
  299. INTEGER ILAENV
  300. EXTERNAL SLAMCH, ILAENV
  301. * ..
  302. * .. External Subroutines ..
  303. EXTERNAL CCOPY, CGEHRD, CGEMM, CLACPY, CLAHQR, CLAQR4,
  304. $ CLARF, CLARFG, CLASET, CTREXC, CUNMHR, SLABAD
  305. * ..
  306. * .. Intrinsic Functions ..
  307. INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, MAX, MIN, REAL
  308. * ..
  309. * .. Statement Functions ..
  310. REAL CABS1
  311. * ..
  312. * .. Statement Function definitions ..
  313. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
  314. * ..
  315. * .. Executable Statements ..
  316. *
  317. * ==== Estimate optimal workspace. ====
  318. *
  319. JW = MIN( NW, KBOT-KTOP+1 )
  320. IF( JW.LE.2 ) THEN
  321. LWKOPT = 1
  322. ELSE
  323. *
  324. * ==== Workspace query call to CGEHRD ====
  325. *
  326. CALL CGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
  327. LWK1 = INT( WORK( 1 ) )
  328. *
  329. * ==== Workspace query call to CUNMHR ====
  330. *
  331. CALL CUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
  332. $ WORK, -1, INFO )
  333. LWK2 = INT( WORK( 1 ) )
  334. *
  335. * ==== Workspace query call to CLAQR4 ====
  336. *
  337. CALL CLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V,
  338. $ LDV, WORK, -1, INFQR )
  339. LWK3 = INT( WORK( 1 ) )
  340. *
  341. * ==== Optimal workspace ====
  342. *
  343. LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
  344. END IF
  345. *
  346. * ==== Quick return in case of workspace query. ====
  347. *
  348. IF( LWORK.EQ.-1 ) THEN
  349. WORK( 1 ) = CMPLX( LWKOPT, 0 )
  350. RETURN
  351. END IF
  352. *
  353. * ==== Nothing to do ...
  354. * ... for an empty active block ... ====
  355. NS = 0
  356. ND = 0
  357. WORK( 1 ) = ONE
  358. IF( KTOP.GT.KBOT )
  359. $ RETURN
  360. * ... nor for an empty deflation window. ====
  361. IF( NW.LT.1 )
  362. $ RETURN
  363. *
  364. * ==== Machine constants ====
  365. *
  366. SAFMIN = SLAMCH( 'SAFE MINIMUM' )
  367. SAFMAX = RONE / SAFMIN
  368. CALL SLABAD( SAFMIN, SAFMAX )
  369. ULP = SLAMCH( 'PRECISION' )
  370. SMLNUM = SAFMIN*( REAL( N ) / ULP )
  371. *
  372. * ==== Setup deflation window ====
  373. *
  374. JW = MIN( NW, KBOT-KTOP+1 )
  375. KWTOP = KBOT - JW + 1
  376. IF( KWTOP.EQ.KTOP ) THEN
  377. S = ZERO
  378. ELSE
  379. S = H( KWTOP, KWTOP-1 )
  380. END IF
  381. *
  382. IF( KBOT.EQ.KWTOP ) THEN
  383. *
  384. * ==== 1-by-1 deflation window: not much to do ====
  385. *
  386. SH( KWTOP ) = H( KWTOP, KWTOP )
  387. NS = 1
  388. ND = 0
  389. IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
  390. $ KWTOP ) ) ) ) THEN
  391. NS = 0
  392. ND = 1
  393. IF( KWTOP.GT.KTOP )
  394. $ H( KWTOP, KWTOP-1 ) = ZERO
  395. END IF
  396. WORK( 1 ) = ONE
  397. RETURN
  398. END IF
  399. *
  400. * ==== Convert to spike-triangular form. (In case of a
  401. * . rare QR failure, this routine continues to do
  402. * . aggressive early deflation using that part of
  403. * . the deflation window that converged using INFQR
  404. * . here and there to keep track.) ====
  405. *
  406. CALL CLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
  407. CALL CCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
  408. *
  409. CALL CLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
  410. NMIN = ILAENV( 12, 'CLAQR3', 'SV', JW, 1, JW, LWORK )
  411. IF( JW.GT.NMIN ) THEN
  412. CALL CLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  413. $ JW, V, LDV, WORK, LWORK, INFQR )
  414. ELSE
  415. CALL CLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  416. $ JW, V, LDV, INFQR )
  417. END IF
  418. *
  419. * ==== Deflation detection loop ====
  420. *
  421. NS = JW
  422. ILST = INFQR + 1
  423. DO 10 KNT = INFQR + 1, JW
  424. *
  425. * ==== Small spike tip deflation test ====
  426. *
  427. FOO = CABS1( T( NS, NS ) )
  428. IF( FOO.EQ.RZERO )
  429. $ FOO = CABS1( S )
  430. IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
  431. $ THEN
  432. *
  433. * ==== One more converged eigenvalue ====
  434. *
  435. NS = NS - 1
  436. ELSE
  437. *
  438. * ==== One undeflatable eigenvalue. Move it up out of the
  439. * . way. (CTREXC can not fail in this case.) ====
  440. *
  441. IFST = NS
  442. CALL CTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  443. ILST = ILST + 1
  444. END IF
  445. 10 CONTINUE
  446. *
  447. * ==== Return to Hessenberg form ====
  448. *
  449. IF( NS.EQ.0 )
  450. $ S = ZERO
  451. *
  452. IF( NS.LT.JW ) THEN
  453. *
  454. * ==== sorting the diagonal of T improves accuracy for
  455. * . graded matrices. ====
  456. *
  457. DO 30 I = INFQR + 1, NS
  458. IFST = I
  459. DO 20 J = I + 1, NS
  460. IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
  461. $ IFST = J
  462. 20 CONTINUE
  463. ILST = I
  464. IF( IFST.NE.ILST )
  465. $ CALL CTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  466. 30 CONTINUE
  467. END IF
  468. *
  469. * ==== Restore shift/eigenvalue array from T ====
  470. *
  471. DO 40 I = INFQR + 1, JW
  472. SH( KWTOP+I-1 ) = T( I, I )
  473. 40 CONTINUE
  474. *
  475. *
  476. IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
  477. IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
  478. *
  479. * ==== Reflect spike back into lower triangle ====
  480. *
  481. CALL CCOPY( NS, V, LDV, WORK, 1 )
  482. DO 50 I = 1, NS
  483. WORK( I ) = CONJG( WORK( I ) )
  484. 50 CONTINUE
  485. BETA = WORK( 1 )
  486. CALL CLARFG( NS, BETA, WORK( 2 ), 1, TAU )
  487. WORK( 1 ) = ONE
  488. *
  489. CALL CLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
  490. *
  491. CALL CLARF( 'L', NS, JW, WORK, 1, CONJG( TAU ), T, LDT,
  492. $ WORK( JW+1 ) )
  493. CALL CLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
  494. $ WORK( JW+1 ) )
  495. CALL CLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
  496. $ WORK( JW+1 ) )
  497. *
  498. CALL CGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
  499. $ LWORK-JW, INFO )
  500. END IF
  501. *
  502. * ==== Copy updated reduced window into place ====
  503. *
  504. IF( KWTOP.GT.1 )
  505. $ H( KWTOP, KWTOP-1 ) = S*CONJG( V( 1, 1 ) )
  506. CALL CLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
  507. CALL CCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
  508. $ LDH+1 )
  509. *
  510. * ==== Accumulate orthogonal matrix in order update
  511. * . H and Z, if requested. ====
  512. *
  513. IF( NS.GT.1 .AND. S.NE.ZERO )
  514. $ CALL CUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
  515. $ WORK( JW+1 ), LWORK-JW, INFO )
  516. *
  517. * ==== Update vertical slab in H ====
  518. *
  519. IF( WANTT ) THEN
  520. LTOP = 1
  521. ELSE
  522. LTOP = KTOP
  523. END IF
  524. DO 60 KROW = LTOP, KWTOP - 1, NV
  525. KLN = MIN( NV, KWTOP-KROW )
  526. CALL CGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
  527. $ LDH, V, LDV, ZERO, WV, LDWV )
  528. CALL CLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
  529. 60 CONTINUE
  530. *
  531. * ==== Update horizontal slab in H ====
  532. *
  533. IF( WANTT ) THEN
  534. DO 70 KCOL = KBOT + 1, N, NH
  535. KLN = MIN( NH, N-KCOL+1 )
  536. CALL CGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
  537. $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
  538. CALL CLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
  539. $ LDH )
  540. 70 CONTINUE
  541. END IF
  542. *
  543. * ==== Update vertical slab in Z ====
  544. *
  545. IF( WANTZ ) THEN
  546. DO 80 KROW = ILOZ, IHIZ, NV
  547. KLN = MIN( NV, IHIZ-KROW+1 )
  548. CALL CGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
  549. $ LDZ, V, LDV, ZERO, WV, LDWV )
  550. CALL CLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
  551. $ LDZ )
  552. 80 CONTINUE
  553. END IF
  554. END IF
  555. *
  556. * ==== Return the number of deflations ... ====
  557. *
  558. ND = JW - NS
  559. *
  560. * ==== ... and the number of shifts. (Subtracting
  561. * . INFQR from the spike length takes care
  562. * . of the case of a rare QR failure while
  563. * . calculating eigenvalues of the deflation
  564. * . window.) ====
  565. *
  566. NS = NS - INFQR
  567. *
  568. * ==== Return optimal workspace. ====
  569. *
  570. WORK( 1 ) = CMPLX( LWKOPT, 0 )
  571. *
  572. * ==== End of CLAQR3 ====
  573. *
  574. END