You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claic1.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. *> \brief \b CLAIC1 applies one step of incremental condition estimation.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLAIC1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claic1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claic1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claic1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER J, JOB
  25. * REAL SEST, SESTPR
  26. * COMPLEX C, GAMMA, S
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX W( J ), X( J )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CLAIC1 applies one step of incremental condition estimation in
  39. *> its simplest version:
  40. *>
  41. *> Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
  42. *> lower triangular matrix L, such that
  43. *> twonorm(L*x) = sest
  44. *> Then CLAIC1 computes sestpr, s, c such that
  45. *> the vector
  46. *> [ s*x ]
  47. *> xhat = [ c ]
  48. *> is an approximate singular vector of
  49. *> [ L 0 ]
  50. *> Lhat = [ w**H gamma ]
  51. *> in the sense that
  52. *> twonorm(Lhat*xhat) = sestpr.
  53. *>
  54. *> Depending on JOB, an estimate for the largest or smallest singular
  55. *> value is computed.
  56. *>
  57. *> Note that [s c]**H and sestpr**2 is an eigenpair of the system
  58. *>
  59. *> diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ]
  60. *> [ conjg(gamma) ]
  61. *>
  62. *> where alpha = x**H*w.
  63. *> \endverbatim
  64. *
  65. * Arguments:
  66. * ==========
  67. *
  68. *> \param[in] JOB
  69. *> \verbatim
  70. *> JOB is INTEGER
  71. *> = 1: an estimate for the largest singular value is computed.
  72. *> = 2: an estimate for the smallest singular value is computed.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] J
  76. *> \verbatim
  77. *> J is INTEGER
  78. *> Length of X and W
  79. *> \endverbatim
  80. *>
  81. *> \param[in] X
  82. *> \verbatim
  83. *> X is COMPLEX array, dimension (J)
  84. *> The j-vector x.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] SEST
  88. *> \verbatim
  89. *> SEST is REAL
  90. *> Estimated singular value of j by j matrix L
  91. *> \endverbatim
  92. *>
  93. *> \param[in] W
  94. *> \verbatim
  95. *> W is COMPLEX array, dimension (J)
  96. *> The j-vector w.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] GAMMA
  100. *> \verbatim
  101. *> GAMMA is COMPLEX
  102. *> The diagonal element gamma.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] SESTPR
  106. *> \verbatim
  107. *> SESTPR is REAL
  108. *> Estimated singular value of (j+1) by (j+1) matrix Lhat.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] S
  112. *> \verbatim
  113. *> S is COMPLEX
  114. *> Sine needed in forming xhat.
  115. *> \endverbatim
  116. *>
  117. *> \param[out] C
  118. *> \verbatim
  119. *> C is COMPLEX
  120. *> Cosine needed in forming xhat.
  121. *> \endverbatim
  122. *
  123. * Authors:
  124. * ========
  125. *
  126. *> \author Univ. of Tennessee
  127. *> \author Univ. of California Berkeley
  128. *> \author Univ. of Colorado Denver
  129. *> \author NAG Ltd.
  130. *
  131. *> \ingroup complexOTHERauxiliary
  132. *
  133. * =====================================================================
  134. SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
  135. *
  136. * -- LAPACK auxiliary routine --
  137. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  138. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  139. *
  140. * .. Scalar Arguments ..
  141. INTEGER J, JOB
  142. REAL SEST, SESTPR
  143. COMPLEX C, GAMMA, S
  144. * ..
  145. * .. Array Arguments ..
  146. COMPLEX W( J ), X( J )
  147. * ..
  148. *
  149. * =====================================================================
  150. *
  151. * .. Parameters ..
  152. REAL ZERO, ONE, TWO
  153. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
  154. REAL HALF, FOUR
  155. PARAMETER ( HALF = 0.5E0, FOUR = 4.0E0 )
  156. * ..
  157. * .. Local Scalars ..
  158. REAL ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2,
  159. $ SCL, T, TEST, TMP, ZETA1, ZETA2
  160. COMPLEX ALPHA, COSINE, SINE
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC ABS, CONJG, MAX, SQRT
  164. * ..
  165. * .. External Functions ..
  166. REAL SLAMCH
  167. COMPLEX CDOTC
  168. EXTERNAL SLAMCH, CDOTC
  169. * ..
  170. * .. Executable Statements ..
  171. *
  172. EPS = SLAMCH( 'Epsilon' )
  173. ALPHA = CDOTC( J, X, 1, W, 1 )
  174. *
  175. ABSALP = ABS( ALPHA )
  176. ABSGAM = ABS( GAMMA )
  177. ABSEST = ABS( SEST )
  178. *
  179. IF( JOB.EQ.1 ) THEN
  180. *
  181. * Estimating largest singular value
  182. *
  183. * special cases
  184. *
  185. IF( SEST.EQ.ZERO ) THEN
  186. S1 = MAX( ABSGAM, ABSALP )
  187. IF( S1.EQ.ZERO ) THEN
  188. S = ZERO
  189. C = ONE
  190. SESTPR = ZERO
  191. ELSE
  192. S = ALPHA / S1
  193. C = GAMMA / S1
  194. TMP = REAL( SQRT( S*CONJG( S )+C*CONJG( C ) ) )
  195. S = S / TMP
  196. C = C / TMP
  197. SESTPR = S1*TMP
  198. END IF
  199. RETURN
  200. ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
  201. S = ONE
  202. C = ZERO
  203. TMP = MAX( ABSEST, ABSALP )
  204. S1 = ABSEST / TMP
  205. S2 = ABSALP / TMP
  206. SESTPR = TMP*SQRT( S1*S1+S2*S2 )
  207. RETURN
  208. ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
  209. S1 = ABSGAM
  210. S2 = ABSEST
  211. IF( S1.LE.S2 ) THEN
  212. S = ONE
  213. C = ZERO
  214. SESTPR = S2
  215. ELSE
  216. S = ZERO
  217. C = ONE
  218. SESTPR = S1
  219. END IF
  220. RETURN
  221. ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
  222. S1 = ABSGAM
  223. S2 = ABSALP
  224. IF( S1.LE.S2 ) THEN
  225. TMP = S1 / S2
  226. SCL = SQRT( ONE+TMP*TMP )
  227. SESTPR = S2*SCL
  228. S = ( ALPHA / S2 ) / SCL
  229. C = ( GAMMA / S2 ) / SCL
  230. ELSE
  231. TMP = S2 / S1
  232. SCL = SQRT( ONE+TMP*TMP )
  233. SESTPR = S1*SCL
  234. S = ( ALPHA / S1 ) / SCL
  235. C = ( GAMMA / S1 ) / SCL
  236. END IF
  237. RETURN
  238. ELSE
  239. *
  240. * normal case
  241. *
  242. ZETA1 = ABSALP / ABSEST
  243. ZETA2 = ABSGAM / ABSEST
  244. *
  245. B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
  246. C = ZETA1*ZETA1
  247. IF( B.GT.ZERO ) THEN
  248. T = REAL( C / ( B+SQRT( B*B+C ) ) )
  249. ELSE
  250. T = REAL( SQRT( B*B+C ) - B )
  251. END IF
  252. *
  253. SINE = -( ALPHA / ABSEST ) / T
  254. COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
  255. TMP = REAL( SQRT( SINE * CONJG( SINE )
  256. $ + COSINE * CONJG( COSINE ) ) )
  257. S = SINE / TMP
  258. C = COSINE / TMP
  259. SESTPR = SQRT( T+ONE )*ABSEST
  260. RETURN
  261. END IF
  262. *
  263. ELSE IF( JOB.EQ.2 ) THEN
  264. *
  265. * Estimating smallest singular value
  266. *
  267. * special cases
  268. *
  269. IF( SEST.EQ.ZERO ) THEN
  270. SESTPR = ZERO
  271. IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
  272. SINE = ONE
  273. COSINE = ZERO
  274. ELSE
  275. SINE = -CONJG( GAMMA )
  276. COSINE = CONJG( ALPHA )
  277. END IF
  278. S1 = MAX( ABS( SINE ), ABS( COSINE ) )
  279. S = SINE / S1
  280. C = COSINE / S1
  281. TMP = REAL( SQRT( S*CONJG( S )+C*CONJG( C ) ) )
  282. S = S / TMP
  283. C = C / TMP
  284. RETURN
  285. ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
  286. S = ZERO
  287. C = ONE
  288. SESTPR = ABSGAM
  289. RETURN
  290. ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
  291. S1 = ABSGAM
  292. S2 = ABSEST
  293. IF( S1.LE.S2 ) THEN
  294. S = ZERO
  295. C = ONE
  296. SESTPR = S1
  297. ELSE
  298. S = ONE
  299. C = ZERO
  300. SESTPR = S2
  301. END IF
  302. RETURN
  303. ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
  304. S1 = ABSGAM
  305. S2 = ABSALP
  306. IF( S1.LE.S2 ) THEN
  307. TMP = S1 / S2
  308. SCL = SQRT( ONE+TMP*TMP )
  309. SESTPR = ABSEST*( TMP / SCL )
  310. S = -( CONJG( GAMMA ) / S2 ) / SCL
  311. C = ( CONJG( ALPHA ) / S2 ) / SCL
  312. ELSE
  313. TMP = S2 / S1
  314. SCL = SQRT( ONE+TMP*TMP )
  315. SESTPR = ABSEST / SCL
  316. S = -( CONJG( GAMMA ) / S1 ) / SCL
  317. C = ( CONJG( ALPHA ) / S1 ) / SCL
  318. END IF
  319. RETURN
  320. ELSE
  321. *
  322. * normal case
  323. *
  324. ZETA1 = ABSALP / ABSEST
  325. ZETA2 = ABSGAM / ABSEST
  326. *
  327. NORMA = MAX( ONE+ZETA1*ZETA1+ZETA1*ZETA2,
  328. $ ZETA1*ZETA2+ZETA2*ZETA2 )
  329. *
  330. * See if root is closer to zero or to ONE
  331. *
  332. TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
  333. IF( TEST.GE.ZERO ) THEN
  334. *
  335. * root is close to zero, compute directly
  336. *
  337. B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
  338. C = ZETA2*ZETA2
  339. T = REAL( C / ( B+SQRT( ABS( B*B-C ) ) ) )
  340. SINE = ( ALPHA / ABSEST ) / ( ONE-T )
  341. COSINE = -( GAMMA / ABSEST ) / T
  342. SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
  343. ELSE
  344. *
  345. * root is closer to ONE, shift by that amount
  346. *
  347. B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
  348. C = ZETA1*ZETA1
  349. IF( B.GE.ZERO ) THEN
  350. T = REAL( -C / ( B+SQRT( B*B+C ) ) )
  351. ELSE
  352. T = REAL( B - SQRT( B*B+C ) )
  353. END IF
  354. SINE = -( ALPHA / ABSEST ) / T
  355. COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
  356. SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
  357. END IF
  358. TMP = REAL( SQRT( SINE * CONJG( SINE )
  359. $ + COSINE * CONJG( COSINE ) ) )
  360. S = SINE / TMP
  361. C = COSINE / TMP
  362. RETURN
  363. *
  364. END IF
  365. END IF
  366. RETURN
  367. *
  368. * End of CLAIC1
  369. *
  370. END