You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zherf.f 6.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. SUBROUTINE ZHERF ( UPLO, N, ALPHA, X, INCX, A, LDA )
  2. * .. Scalar Arguments ..
  3. DOUBLE PRECISION ALPHA
  4. INTEGER INCX, LDA, N
  5. CHARACTER*1 UPLO
  6. * .. Array Arguments ..
  7. COMPLEX*16 A( LDA, * ), X( * )
  8. * ..
  9. *
  10. * Purpose
  11. * =======
  12. *
  13. * ZHER performs the hermitian rank 1 operation
  14. *
  15. * A := alpha*x*conjg( x' ) + A,
  16. *
  17. * where alpha is a real scalar, x is an n element vector and A is an
  18. * n by n hermitian matrix.
  19. *
  20. * Parameters
  21. * ==========
  22. *
  23. * UPLO - CHARACTER*1.
  24. * On entry, UPLO specifies whether the upper or lower
  25. * triangular part of the array A is to be referenced as
  26. * follows:
  27. *
  28. * UPLO = 'U' or 'u' Only the upper triangular part of A
  29. * is to be referenced.
  30. *
  31. * UPLO = 'L' or 'l' Only the lower triangular part of A
  32. * is to be referenced.
  33. *
  34. * Unchanged on exit.
  35. *
  36. * N - INTEGER.
  37. * On entry, N specifies the order of the matrix A.
  38. * N must be at least zero.
  39. * Unchanged on exit.
  40. *
  41. * ALPHA - DOUBLE PRECISION.
  42. * On entry, ALPHA specifies the scalar alpha.
  43. * Unchanged on exit.
  44. *
  45. * X - COMPLEX*16 array of dimension at least
  46. * ( 1 + ( n - 1 )*abs( INCX ) ).
  47. * Before entry, the incremented array X must contain the n
  48. * element vector x.
  49. * Unchanged on exit.
  50. *
  51. * INCX - INTEGER.
  52. * On entry, INCX specifies the increment for the elements of
  53. * X. INCX must not be zero.
  54. * Unchanged on exit.
  55. *
  56. * A - COMPLEX*16 array of DIMENSION ( LDA, n ).
  57. * Before entry with UPLO = 'U' or 'u', the leading n by n
  58. * upper triangular part of the array A must contain the upper
  59. * triangular part of the hermitian matrix and the strictly
  60. * lower triangular part of A is not referenced. On exit, the
  61. * upper triangular part of the array A is overwritten by the
  62. * upper triangular part of the updated matrix.
  63. * Before entry with UPLO = 'L' or 'l', the leading n by n
  64. * lower triangular part of the array A must contain the lower
  65. * triangular part of the hermitian matrix and the strictly
  66. * upper triangular part of A is not referenced. On exit, the
  67. * lower triangular part of the array A is overwritten by the
  68. * lower triangular part of the updated matrix.
  69. * Note that the imaginary parts of the diagonal elements need
  70. * not be set, they are assumed to be zero, and on exit they
  71. * are set to zero.
  72. *
  73. * LDA - INTEGER.
  74. * On entry, LDA specifies the first dimension of A as declared
  75. * in the calling (sub) program. LDA must be at least
  76. * max( 1, n ).
  77. * Unchanged on exit.
  78. *
  79. *
  80. * Level 2 Blas routine.
  81. *
  82. * -- Written on 22-October-1986.
  83. * Jack Dongarra, Argonne National Lab.
  84. * Jeremy Du Croz, Nag Central Office.
  85. * Sven Hammarling, Nag Central Office.
  86. * Richard Hanson, Sandia National Labs.
  87. *
  88. *
  89. * .. Parameters ..
  90. COMPLEX*16 ZERO
  91. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  92. * .. Local Scalars ..
  93. COMPLEX*16 TEMP
  94. INTEGER I, INFO, IX, J, JX, KX
  95. * .. External Functions ..
  96. LOGICAL LSAME
  97. EXTERNAL LSAME
  98. * .. External Subroutines ..
  99. EXTERNAL XERBLA
  100. * .. Intrinsic Functions ..
  101. INTRINSIC DCONJG, MAX, DBLE
  102. * ..
  103. * .. Executable Statements ..
  104. *
  105. * Test the input parameters.
  106. *
  107. INFO = 0
  108. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  109. $ .NOT.LSAME( UPLO, 'L' ) )THEN
  110. INFO = 1
  111. ELSE IF( N.LT.0 )THEN
  112. INFO = 2
  113. ELSE IF( INCX.EQ.0 )THEN
  114. INFO = 5
  115. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  116. INFO = 7
  117. END IF
  118. IF( INFO.NE.0 )THEN
  119. CALL XERBLA( 'ZHER ', INFO )
  120. RETURN
  121. END IF
  122. *
  123. * Quick return if possible.
  124. *
  125. IF( ( N.EQ.0 ).OR.( ALPHA.EQ.DBLE( ZERO ) ) )
  126. $ RETURN
  127. *
  128. * Set the start point in X if the increment is not unity.
  129. *
  130. IF( INCX.LE.0 )THEN
  131. KX = 1 - ( N - 1 )*INCX
  132. ELSE IF( INCX.NE.1 )THEN
  133. KX = 1
  134. END IF
  135. *
  136. * Start the operations. In this version the elements of A are
  137. * accessed sequentially with one pass through the triangular part
  138. * of A.
  139. *
  140. IF( LSAME( UPLO, 'U' ) )THEN
  141. *
  142. * Form A when A is stored in upper triangle.
  143. *
  144. IF( INCX.EQ.1 )THEN
  145. DO 20, J = 1, N
  146. IF( X( J ).NE.ZERO )THEN
  147. TEMP = ALPHA*DCONJG( X( J ) )
  148. DO 10, I = 1, J - 1
  149. A( I, J ) = A( I, J ) + X( I )*TEMP
  150. 10 CONTINUE
  151. A( J, J ) = DBLE( A( J, J ) ) + DBLE( X( J )*TEMP )
  152. ELSE
  153. A( J, J ) = DBLE( A( J, J ) )
  154. END IF
  155. 20 CONTINUE
  156. ELSE
  157. JX = KX
  158. DO 40, J = 1, N
  159. IF( X( JX ).NE.ZERO )THEN
  160. TEMP = ALPHA*DCONJG( X( JX ) )
  161. IX = KX
  162. DO 30, I = 1, J - 1
  163. A( I, J ) = A( I, J ) + X( IX )*TEMP
  164. IX = IX + INCX
  165. 30 CONTINUE
  166. A( J, J ) = DBLE( A( J, J ) ) + DBLE( X( JX )*TEMP )
  167. ELSE
  168. A( J, J ) = DBLE( A( J, J ) )
  169. END IF
  170. JX = JX + INCX
  171. 40 CONTINUE
  172. END IF
  173. ELSE
  174. *
  175. * Form A when A is stored in lower triangle.
  176. *
  177. IF( INCX.EQ.1 )THEN
  178. DO 60, J = 1, N
  179. IF( X( J ).NE.ZERO )THEN
  180. TEMP = ALPHA*DCONJG( X( J ) )
  181. A( J, J ) = DBLE( A( J, J ) ) + DBLE( TEMP*X( J ) )
  182. DO 50, I = J + 1, N
  183. A( I, J ) = A( I, J ) + X( I )*TEMP
  184. 50 CONTINUE
  185. ELSE
  186. A( J, J ) = DBLE( A( J, J ) )
  187. END IF
  188. 60 CONTINUE
  189. ELSE
  190. JX = KX
  191. DO 80, J = 1, N
  192. IF( X( JX ).NE.ZERO )THEN
  193. TEMP = ALPHA*DCONJG( X( JX ) )
  194. A( J, J ) = DBLE( A( J, J ) ) + DBLE( TEMP*X( JX ) )
  195. IX = JX
  196. DO 70, I = J + 1, N
  197. IX = IX + INCX
  198. A( I, J ) = A( I, J ) + X( IX )*TEMP
  199. 70 CONTINUE
  200. ELSE
  201. A( J, J ) = DBLE( A( J, J ) )
  202. END IF
  203. JX = JX + INCX
  204. 80 CONTINUE
  205. END IF
  206. END IF
  207. *
  208. RETURN
  209. *
  210. * End of ZHER .
  211. *
  212. END