You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssymmf.f 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. SUBROUTINE SSYMMF ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
  2. $ BETA, C, LDC )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 SIDE, UPLO
  5. INTEGER M, N, LDA, LDB, LDC
  6. REAL ALPHA, BETA
  7. * .. Array Arguments ..
  8. REAL A( LDA, * ), B( LDB, * ), C( LDC, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * SSYMM performs one of the matrix-matrix operations
  15. *
  16. * C := alpha*A*B + beta*C,
  17. *
  18. * or
  19. *
  20. * C := alpha*B*A + beta*C,
  21. *
  22. * where alpha and beta are scalars, A is a symmetric matrix and B and
  23. * C are m by n matrices.
  24. *
  25. * Parameters
  26. * ==========
  27. *
  28. * SIDE - CHARACTER*1.
  29. * On entry, SIDE specifies whether the symmetric matrix A
  30. * appears on the left or right in the operation as follows:
  31. *
  32. * SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
  33. *
  34. * SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
  35. *
  36. * Unchanged on exit.
  37. *
  38. * UPLO - CHARACTER*1.
  39. * On entry, UPLO specifies whether the upper or lower
  40. * triangular part of the symmetric matrix A is to be
  41. * referenced as follows:
  42. *
  43. * UPLO = 'U' or 'u' Only the upper triangular part of the
  44. * symmetric matrix is to be referenced.
  45. *
  46. * UPLO = 'L' or 'l' Only the lower triangular part of the
  47. * symmetric matrix is to be referenced.
  48. *
  49. * Unchanged on exit.
  50. *
  51. * M - INTEGER.
  52. * On entry, M specifies the number of rows of the matrix C.
  53. * M must be at least zero.
  54. * Unchanged on exit.
  55. *
  56. * N - INTEGER.
  57. * On entry, N specifies the number of columns of the matrix C.
  58. * N must be at least zero.
  59. * Unchanged on exit.
  60. *
  61. * ALPHA - REAL .
  62. * On entry, ALPHA specifies the scalar alpha.
  63. * Unchanged on exit.
  64. *
  65. * A - REAL array of DIMENSION ( LDA, ka ), where ka is
  66. * m when SIDE = 'L' or 'l' and is n otherwise.
  67. * Before entry with SIDE = 'L' or 'l', the m by m part of
  68. * the array A must contain the symmetric matrix, such that
  69. * when UPLO = 'U' or 'u', the leading m by m upper triangular
  70. * part of the array A must contain the upper triangular part
  71. * of the symmetric matrix and the strictly lower triangular
  72. * part of A is not referenced, and when UPLO = 'L' or 'l',
  73. * the leading m by m lower triangular part of the array A
  74. * must contain the lower triangular part of the symmetric
  75. * matrix and the strictly upper triangular part of A is not
  76. * referenced.
  77. * Before entry with SIDE = 'R' or 'r', the n by n part of
  78. * the array A must contain the symmetric matrix, such that
  79. * when UPLO = 'U' or 'u', the leading n by n upper triangular
  80. * part of the array A must contain the upper triangular part
  81. * of the symmetric matrix and the strictly lower triangular
  82. * part of A is not referenced, and when UPLO = 'L' or 'l',
  83. * the leading n by n lower triangular part of the array A
  84. * must contain the lower triangular part of the symmetric
  85. * matrix and the strictly upper triangular part of A is not
  86. * referenced.
  87. * Unchanged on exit.
  88. *
  89. * LDA - INTEGER.
  90. * On entry, LDA specifies the first dimension of A as declared
  91. * in the calling (sub) program. When SIDE = 'L' or 'l' then
  92. * LDA must be at least max( 1, m ), otherwise LDA must be at
  93. * least max( 1, n ).
  94. * Unchanged on exit.
  95. *
  96. * B - REAL array of DIMENSION ( LDB, n ).
  97. * Before entry, the leading m by n part of the array B must
  98. * contain the matrix B.
  99. * Unchanged on exit.
  100. *
  101. * LDB - INTEGER.
  102. * On entry, LDB specifies the first dimension of B as declared
  103. * in the calling (sub) program. LDB must be at least
  104. * max( 1, m ).
  105. * Unchanged on exit.
  106. *
  107. * BETA - REAL .
  108. * On entry, BETA specifies the scalar beta. When BETA is
  109. * supplied as zero then C need not be set on input.
  110. * Unchanged on exit.
  111. *
  112. * C - REAL array of DIMENSION ( LDC, n ).
  113. * Before entry, the leading m by n part of the array C must
  114. * contain the matrix C, except when beta is zero, in which
  115. * case C need not be set on entry.
  116. * On exit, the array C is overwritten by the m by n updated
  117. * matrix.
  118. *
  119. * LDC - INTEGER.
  120. * On entry, LDC specifies the first dimension of C as declared
  121. * in the calling (sub) program. LDC must be at least
  122. * max( 1, m ).
  123. * Unchanged on exit.
  124. *
  125. *
  126. * Level 3 Blas routine.
  127. *
  128. * -- Written on 8-February-1989.
  129. * Jack Dongarra, Argonne National Laboratory.
  130. * Iain Duff, AERE Harwell.
  131. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  132. * Sven Hammarling, Numerical Algorithms Group Ltd.
  133. *
  134. *
  135. * .. External Functions ..
  136. LOGICAL LSAME
  137. EXTERNAL LSAME
  138. * .. External Subroutines ..
  139. EXTERNAL XERBLA
  140. * .. Intrinsic Functions ..
  141. INTRINSIC MAX
  142. * .. Local Scalars ..
  143. LOGICAL UPPER
  144. INTEGER I, INFO, J, K, NROWA
  145. REAL TEMP1, TEMP2
  146. * .. Parameters ..
  147. REAL ONE , ZERO
  148. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  149. * ..
  150. * .. Executable Statements ..
  151. *
  152. * Set NROWA as the number of rows of A.
  153. *
  154. IF( LSAME( SIDE, 'L' ) )THEN
  155. NROWA = M
  156. ELSE
  157. NROWA = N
  158. END IF
  159. UPPER = LSAME( UPLO, 'U' )
  160. *
  161. * Test the input parameters.
  162. *
  163. INFO = 0
  164. IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND.
  165. $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN
  166. INFO = 1
  167. ELSE IF( ( .NOT.UPPER ).AND.
  168. $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
  169. INFO = 2
  170. ELSE IF( M .LT.0 )THEN
  171. INFO = 3
  172. ELSE IF( N .LT.0 )THEN
  173. INFO = 4
  174. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  175. INFO = 7
  176. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  177. INFO = 9
  178. ELSE IF( LDC.LT.MAX( 1, M ) )THEN
  179. INFO = 12
  180. END IF
  181. IF( INFO.NE.0 )THEN
  182. CALL XERBLA( 'SSYMM ', INFO )
  183. RETURN
  184. END IF
  185. *
  186. * Quick return if possible.
  187. *
  188. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  189. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  190. $ RETURN
  191. *
  192. * And when alpha.eq.zero.
  193. *
  194. IF( ALPHA.EQ.ZERO )THEN
  195. IF( BETA.EQ.ZERO )THEN
  196. DO 20, J = 1, N
  197. DO 10, I = 1, M
  198. C( I, J ) = ZERO
  199. 10 CONTINUE
  200. 20 CONTINUE
  201. ELSE
  202. DO 40, J = 1, N
  203. DO 30, I = 1, M
  204. C( I, J ) = BETA*C( I, J )
  205. 30 CONTINUE
  206. 40 CONTINUE
  207. END IF
  208. RETURN
  209. END IF
  210. *
  211. * Start the operations.
  212. *
  213. IF( LSAME( SIDE, 'L' ) )THEN
  214. *
  215. * Form C := alpha*A*B + beta*C.
  216. *
  217. IF( UPPER )THEN
  218. DO 70, J = 1, N
  219. DO 60, I = 1, M
  220. TEMP1 = ALPHA*B( I, J )
  221. TEMP2 = ZERO
  222. DO 50, K = 1, I - 1
  223. C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
  224. TEMP2 = TEMP2 + B( K, J )*A( K, I )
  225. 50 CONTINUE
  226. IF( BETA.EQ.ZERO )THEN
  227. C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
  228. ELSE
  229. C( I, J ) = BETA *C( I, J ) +
  230. $ TEMP1*A( I, I ) + ALPHA*TEMP2
  231. END IF
  232. 60 CONTINUE
  233. 70 CONTINUE
  234. ELSE
  235. DO 100, J = 1, N
  236. DO 90, I = M, 1, -1
  237. TEMP1 = ALPHA*B( I, J )
  238. TEMP2 = ZERO
  239. DO 80, K = I + 1, M
  240. C( K, J ) = C( K, J ) + TEMP1 *A( K, I )
  241. TEMP2 = TEMP2 + B( K, J )*A( K, I )
  242. 80 CONTINUE
  243. IF( BETA.EQ.ZERO )THEN
  244. C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
  245. ELSE
  246. C( I, J ) = BETA *C( I, J ) +
  247. $ TEMP1*A( I, I ) + ALPHA*TEMP2
  248. END IF
  249. 90 CONTINUE
  250. 100 CONTINUE
  251. END IF
  252. ELSE
  253. *
  254. * Form C := alpha*B*A + beta*C.
  255. *
  256. DO 170, J = 1, N
  257. TEMP1 = ALPHA*A( J, J )
  258. IF( BETA.EQ.ZERO )THEN
  259. DO 110, I = 1, M
  260. C( I, J ) = TEMP1*B( I, J )
  261. 110 CONTINUE
  262. ELSE
  263. DO 120, I = 1, M
  264. C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
  265. 120 CONTINUE
  266. END IF
  267. DO 140, K = 1, J - 1
  268. IF( UPPER )THEN
  269. TEMP1 = ALPHA*A( K, J )
  270. ELSE
  271. TEMP1 = ALPHA*A( J, K )
  272. END IF
  273. DO 130, I = 1, M
  274. C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  275. 130 CONTINUE
  276. 140 CONTINUE
  277. DO 160, K = J + 1, N
  278. IF( UPPER )THEN
  279. TEMP1 = ALPHA*A( J, K )
  280. ELSE
  281. TEMP1 = ALPHA*A( K, J )
  282. END IF
  283. DO 150, I = 1, M
  284. C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  285. 150 CONTINUE
  286. 160 CONTINUE
  287. 170 CONTINUE
  288. END IF
  289. *
  290. RETURN
  291. *
  292. * End of SSYMM .
  293. *
  294. END