You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgemmf.f 9.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. SUBROUTINE DGEMMF(TRANA,TRANB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  2. * .. Scalar Arguments ..
  3. DOUBLE PRECISION ALPHA,BETA
  4. INTEGER K,LDA,LDB,LDC,M,N
  5. CHARACTER TRANA,TRANB
  6. * ..
  7. * .. Array Arguments ..
  8. DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * DGEMM performs one of the matrix-matrix operations
  15. *
  16. * C := alpha*op( A )*op( B ) + beta*C,
  17. *
  18. * where op( X ) is one of
  19. *
  20. * op( X ) = X or op( X ) = X',
  21. *
  22. * alpha and beta are scalars, and A, B and C are matrices, with op( A )
  23. * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
  24. *
  25. * Arguments
  26. * ==========
  27. *
  28. * TRANA - CHARACTER*1.
  29. * On entry, TRANA specifies the form of op( A ) to be used in
  30. * the matrix multiplication as follows:
  31. *
  32. * TRANA = 'N' or 'n', op( A ) = A.
  33. *
  34. * TRANA = 'T' or 't', op( A ) = A'.
  35. *
  36. * TRANA = 'C' or 'c', op( A ) = A'.
  37. *
  38. * Unchanged on exit.
  39. *
  40. * TRANB - CHARACTER*1.
  41. * On entry, TRANB specifies the form of op( B ) to be used in
  42. * the matrix multiplication as follows:
  43. *
  44. * TRANB = 'N' or 'n', op( B ) = B.
  45. *
  46. * TRANB = 'T' or 't', op( B ) = B'.
  47. *
  48. * TRANB = 'C' or 'c', op( B ) = B'.
  49. *
  50. * Unchanged on exit.
  51. *
  52. * M - INTEGER.
  53. * On entry, M specifies the number of rows of the matrix
  54. * op( A ) and of the matrix C. M must be at least zero.
  55. * Unchanged on exit.
  56. *
  57. * N - INTEGER.
  58. * On entry, N specifies the number of columns of the matrix
  59. * op( B ) and the number of columns of the matrix C. N must be
  60. * at least zero.
  61. * Unchanged on exit.
  62. *
  63. * K - INTEGER.
  64. * On entry, K specifies the number of columns of the matrix
  65. * op( A ) and the number of rows of the matrix op( B ). K must
  66. * be at least zero.
  67. * Unchanged on exit.
  68. *
  69. * ALPHA - DOUBLE PRECISION.
  70. * On entry, ALPHA specifies the scalar alpha.
  71. * Unchanged on exit.
  72. *
  73. * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
  74. * k when TRANA = 'N' or 'n', and is m otherwise.
  75. * Before entry with TRANA = 'N' or 'n', the leading m by k
  76. * part of the array A must contain the matrix A, otherwise
  77. * the leading k by m part of the array A must contain the
  78. * matrix A.
  79. * Unchanged on exit.
  80. *
  81. * LDA - INTEGER.
  82. * On entry, LDA specifies the first dimension of A as declared
  83. * in the calling (sub) program. When TRANA = 'N' or 'n' then
  84. * LDA must be at least max( 1, m ), otherwise LDA must be at
  85. * least max( 1, k ).
  86. * Unchanged on exit.
  87. *
  88. * B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
  89. * n when TRANB = 'N' or 'n', and is k otherwise.
  90. * Before entry with TRANB = 'N' or 'n', the leading k by n
  91. * part of the array B must contain the matrix B, otherwise
  92. * the leading n by k part of the array B must contain the
  93. * matrix B.
  94. * Unchanged on exit.
  95. *
  96. * LDB - INTEGER.
  97. * On entry, LDB specifies the first dimension of B as declared
  98. * in the calling (sub) program. When TRANB = 'N' or 'n' then
  99. * LDB must be at least max( 1, k ), otherwise LDB must be at
  100. * least max( 1, n ).
  101. * Unchanged on exit.
  102. *
  103. * BETA - DOUBLE PRECISION.
  104. * On entry, BETA specifies the scalar beta. When BETA is
  105. * supplied as zero then C need not be set on input.
  106. * Unchanged on exit.
  107. *
  108. * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
  109. * Before entry, the leading m by n part of the array C must
  110. * contain the matrix C, except when beta is zero, in which
  111. * case C need not be set on entry.
  112. * On exit, the array C is overwritten by the m by n matrix
  113. * ( alpha*op( A )*op( B ) + beta*C ).
  114. *
  115. * LDC - INTEGER.
  116. * On entry, LDC specifies the first dimension of C as declared
  117. * in the calling (sub) program. LDC must be at least
  118. * max( 1, m ).
  119. * Unchanged on exit.
  120. *
  121. *
  122. * Level 3 Blas routine.
  123. *
  124. * -- Written on 8-February-1989.
  125. * Jack Dongarra, Argonne National Laboratory.
  126. * Iain Duff, AERE Harwell.
  127. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  128. * Sven Hammarling, Numerical Algorithms Group Ltd.
  129. *
  130. *
  131. * .. External Functions ..
  132. LOGICAL LSAME
  133. EXTERNAL LSAME
  134. * ..
  135. * .. External Subroutines ..
  136. EXTERNAL XERBLA
  137. * ..
  138. * .. Intrinsic Functions ..
  139. INTRINSIC MAX
  140. * ..
  141. * .. Local Scalars ..
  142. DOUBLE PRECISION TEMP
  143. INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
  144. LOGICAL NOTA,NOTB
  145. * ..
  146. * .. Parameters ..
  147. DOUBLE PRECISION ONE,ZERO
  148. PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  149. * ..
  150. *
  151. * Set NOTA and NOTB as true if A and B respectively are not
  152. * transposed and set NROWA, NCOLA and NROWB as the number of rows
  153. * and columns of A and the number of rows of B respectively.
  154. *
  155. NOTA = LSAME(TRANA,'N')
  156. NOTB = LSAME(TRANB,'N')
  157. IF (NOTA) THEN
  158. NROWA = M
  159. NCOLA = K
  160. ELSE
  161. NROWA = K
  162. NCOLA = M
  163. END IF
  164. IF (NOTB) THEN
  165. NROWB = K
  166. ELSE
  167. NROWB = N
  168. END IF
  169. *
  170. * Test the input parameters.
  171. *
  172. INFO = 0
  173. IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANA,'C')) .AND.
  174. + (.NOT.LSAME(TRANA,'T'))) THEN
  175. INFO = 1
  176. ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANB,'C')) .AND.
  177. + (.NOT.LSAME(TRANB,'T'))) THEN
  178. INFO = 2
  179. ELSE IF (M.LT.0) THEN
  180. INFO = 3
  181. ELSE IF (N.LT.0) THEN
  182. INFO = 4
  183. ELSE IF (K.LT.0) THEN
  184. INFO = 5
  185. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  186. INFO = 8
  187. ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
  188. INFO = 10
  189. ELSE IF (LDC.LT.MAX(1,M)) THEN
  190. INFO = 13
  191. END IF
  192. IF (INFO.NE.0) THEN
  193. CALL XERBLA('DGEMM ',INFO)
  194. RETURN
  195. END IF
  196. *
  197. * Quick return if possible.
  198. *
  199. IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  200. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
  201. *
  202. * And if alpha.eq.zero.
  203. *
  204. IF (ALPHA.EQ.ZERO) THEN
  205. IF (BETA.EQ.ZERO) THEN
  206. DO 20 J = 1,N
  207. DO 10 I = 1,M
  208. C(I,J) = ZERO
  209. 10 CONTINUE
  210. 20 CONTINUE
  211. ELSE
  212. DO 40 J = 1,N
  213. DO 30 I = 1,M
  214. C(I,J) = BETA*C(I,J)
  215. 30 CONTINUE
  216. 40 CONTINUE
  217. END IF
  218. RETURN
  219. END IF
  220. *
  221. * Start the operations.
  222. *
  223. IF (NOTB) THEN
  224. IF (NOTA) THEN
  225. *
  226. * Form C := alpha*A*B + beta*C.
  227. *
  228. DO 90 J = 1,N
  229. IF (BETA.EQ.ZERO) THEN
  230. DO 50 I = 1,M
  231. C(I,J) = ZERO
  232. 50 CONTINUE
  233. ELSE IF (BETA.NE.ONE) THEN
  234. DO 60 I = 1,M
  235. C(I,J) = BETA*C(I,J)
  236. 60 CONTINUE
  237. END IF
  238. DO 80 L = 1,K
  239. IF (B(L,J).NE.ZERO) THEN
  240. TEMP = ALPHA*B(L,J)
  241. DO 70 I = 1,M
  242. C(I,J) = C(I,J) + TEMP*A(I,L)
  243. 70 CONTINUE
  244. END IF
  245. 80 CONTINUE
  246. 90 CONTINUE
  247. ELSE
  248. *
  249. * Form C := alpha*A'*B + beta*C
  250. *
  251. DO 120 J = 1,N
  252. DO 110 I = 1,M
  253. TEMP = ZERO
  254. DO 100 L = 1,K
  255. TEMP = TEMP + A(L,I)*B(L,J)
  256. 100 CONTINUE
  257. IF (BETA.EQ.ZERO) THEN
  258. C(I,J) = ALPHA*TEMP
  259. ELSE
  260. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  261. END IF
  262. 110 CONTINUE
  263. 120 CONTINUE
  264. END IF
  265. ELSE
  266. IF (NOTA) THEN
  267. *
  268. * Form C := alpha*A*B' + beta*C
  269. *
  270. DO 170 J = 1,N
  271. IF (BETA.EQ.ZERO) THEN
  272. DO 130 I = 1,M
  273. C(I,J) = ZERO
  274. 130 CONTINUE
  275. ELSE IF (BETA.NE.ONE) THEN
  276. DO 140 I = 1,M
  277. C(I,J) = BETA*C(I,J)
  278. 140 CONTINUE
  279. END IF
  280. DO 160 L = 1,K
  281. IF (B(J,L).NE.ZERO) THEN
  282. TEMP = ALPHA*B(J,L)
  283. DO 150 I = 1,M
  284. C(I,J) = C(I,J) + TEMP*A(I,L)
  285. 150 CONTINUE
  286. END IF
  287. 160 CONTINUE
  288. 170 CONTINUE
  289. ELSE
  290. *
  291. * Form C := alpha*A'*B' + beta*C
  292. *
  293. DO 200 J = 1,N
  294. DO 190 I = 1,M
  295. TEMP = ZERO
  296. DO 180 L = 1,K
  297. TEMP = TEMP + A(L,I)*B(J,L)
  298. 180 CONTINUE
  299. IF (BETA.EQ.ZERO) THEN
  300. C(I,J) = ALPHA*TEMP
  301. ELSE
  302. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  303. END IF
  304. 190 CONTINUE
  305. 200 CONTINUE
  306. END IF
  307. END IF
  308. *
  309. RETURN
  310. *
  311. * End of DGEMM .
  312. *
  313. END