You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

symv_thread.c 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include <stdlib.h>
  40. #include "common.h"
  41. #include "symcopy.h"
  42. #if! defined(HEMV) && !defined(HEMVREV)
  43. #define MYSYMV_U SYMV_U
  44. #define MYSYMV_L SYMV_L
  45. #elif defined HEMV
  46. #define MYSYMV_U HEMV_U
  47. #define MYSYMV_L HEMV_L
  48. #else
  49. #define MYSYMV_U HEMV_V
  50. #define MYSYMV_L HEMV_M
  51. #endif
  52. static int symv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
  53. FLOAT *a, *x, *y;
  54. BLASLONG lda, incx, incy;
  55. BLASLONG m_from, m_to;
  56. a = (FLOAT *)args -> a;
  57. x = (FLOAT *)args -> b;
  58. y = (FLOAT *)args -> c;
  59. lda = args -> lda;
  60. incx = args -> ldb;
  61. incy = args -> ldc;
  62. m_from = 0;
  63. m_to = args -> m;
  64. if (range_m) {
  65. m_from = *(range_m + 0);
  66. m_to = *(range_m + 1);
  67. }
  68. if (range_n) y += *range_n * COMPSIZE;
  69. #ifndef LOWER
  70. SCAL_K(m_to, 0, 0, ZERO,
  71. #ifdef COMPLEX
  72. ZERO,
  73. #endif
  74. y, 1, NULL, 0, NULL, 0);
  75. MYSYMV_U (m_to, m_to - m_from, ONE,
  76. #ifdef COMPLEX
  77. ZERO,
  78. #endif
  79. a, lda, x, incx, y, 1, buffer);
  80. #else
  81. SCAL_K(args -> m - m_from, 0, 0, ZERO,
  82. #ifdef COMPLEX
  83. ZERO,
  84. #endif
  85. y + m_from * COMPSIZE, 1, NULL, 0, NULL, 0);
  86. MYSYMV_L (args -> m - m_from, m_to - m_from, ONE,
  87. #ifdef COMPLEX
  88. ZERO,
  89. #endif
  90. a + m_from * (lda + 1) * COMPSIZE, lda, x + m_from * incx * COMPSIZE, incx, y + m_from * COMPSIZE, 1, buffer);
  91. #endif
  92. return 0;
  93. }
  94. #ifndef COMPLEX
  95. int CNAME(BLASLONG m, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
  96. #else
  97. int CNAME(BLASLONG m, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
  98. #endif
  99. blas_arg_t args;
  100. blas_queue_t queue[MAX_CPU_NUMBER];
  101. BLASLONG range_m[MAX_CPU_NUMBER + 1];
  102. BLASLONG range_n[MAX_CPU_NUMBER];
  103. BLASLONG width, i, num_cpu;
  104. double dnum;
  105. int mask = 3;
  106. #ifdef SMP
  107. #ifndef COMPLEX
  108. #ifdef XDOUBLE
  109. int mode = BLAS_XDOUBLE | BLAS_REAL;
  110. #elif defined(DOUBLE)
  111. int mode = BLAS_DOUBLE | BLAS_REAL;
  112. #else
  113. int mode = BLAS_SINGLE | BLAS_REAL;
  114. #endif
  115. #else
  116. #ifdef XDOUBLE
  117. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  118. #elif defined(DOUBLE)
  119. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  120. #else
  121. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  122. #endif
  123. #endif
  124. #endif
  125. args.m = m;
  126. args.a = (void *)a;
  127. args.b = (void *)x;
  128. args.c = (void *)buffer;
  129. args.lda = lda;
  130. args.ldb = incx;
  131. args.ldc = incy;
  132. dnum = (double)m * (double)m / (double)nthreads;
  133. num_cpu = 0;
  134. #ifndef LOWER
  135. range_m[0] = 0;
  136. i = 0;
  137. while (i < m){
  138. if (nthreads - num_cpu > 1) {
  139. double di = (double)i;
  140. width = ((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask;
  141. if (width < 4) width = 4;
  142. if (width > m - i) width = m - i;
  143. } else {
  144. width = m - i;
  145. }
  146. range_m[num_cpu + 1] = range_m[num_cpu] + width;
  147. range_n[num_cpu] = num_cpu * (((m + 15) & ~15) + 16);
  148. queue[MAX_CPU_NUMBER - num_cpu - 1].mode = mode;
  149. queue[MAX_CPU_NUMBER - num_cpu - 1].routine = symv_kernel;
  150. queue[MAX_CPU_NUMBER - num_cpu - 1].args = &args;
  151. queue[MAX_CPU_NUMBER - num_cpu - 1].range_m = &range_m[num_cpu];
  152. queue[MAX_CPU_NUMBER - num_cpu - 1].range_n = &range_n[num_cpu];
  153. queue[MAX_CPU_NUMBER - num_cpu - 1].sa = NULL;
  154. queue[MAX_CPU_NUMBER - num_cpu - 1].sb = NULL;
  155. queue[MAX_CPU_NUMBER - num_cpu - 1].next = &queue[MAX_CPU_NUMBER - num_cpu];
  156. num_cpu ++;
  157. i += width;
  158. }
  159. if (num_cpu) {
  160. queue[MAX_CPU_NUMBER - num_cpu].sa = NULL;
  161. queue[MAX_CPU_NUMBER - num_cpu].sb = buffer + num_cpu * (((m + 255) & ~255) + 16) * COMPSIZE;
  162. queue[MAX_CPU_NUMBER - 1].next = NULL;
  163. exec_blas(num_cpu, &queue[MAX_CPU_NUMBER - num_cpu]);
  164. }
  165. #else
  166. range_m[0] = 0;
  167. i = 0;
  168. while (i < m){
  169. if (nthreads - num_cpu > 1) {
  170. double di = (double)(m - i);
  171. if (di * di - dnum > 0) {
  172. width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
  173. } else {
  174. width = m - i;
  175. }
  176. if (width < 4) width = 4;
  177. if (width > m - i) width = m - i;
  178. } else {
  179. width = m - i;
  180. }
  181. range_m[num_cpu + 1] = range_m[num_cpu] + width;
  182. range_n[num_cpu] = num_cpu * (((m + 15) & ~15) + 16);
  183. queue[num_cpu].mode = mode;
  184. queue[num_cpu].routine = symv_kernel;
  185. queue[num_cpu].args = &args;
  186. queue[num_cpu].range_m = &range_m[num_cpu];
  187. queue[num_cpu].range_n = &range_n[num_cpu];
  188. queue[num_cpu].sa = NULL;
  189. queue[num_cpu].sb = NULL;
  190. queue[num_cpu].next = &queue[num_cpu + 1];
  191. num_cpu ++;
  192. i += width;
  193. }
  194. if (num_cpu) {
  195. queue[0].sa = NULL;
  196. queue[0].sb = buffer + num_cpu * (((m + 255) & ~255) + 16) * COMPSIZE;
  197. queue[num_cpu - 1].next = NULL;
  198. exec_blas(num_cpu, queue);
  199. }
  200. #endif
  201. #ifndef LOWER
  202. for (i = 0; i < num_cpu - 1; i ++) {
  203. AXPYU_K(range_m[i + 1], 0, 0, ONE,
  204. #ifdef COMPLEX
  205. ZERO,
  206. #endif
  207. buffer + range_n[i] * COMPSIZE, 1, buffer + range_n[num_cpu - 1] * COMPSIZE, 1, NULL, 0);
  208. }
  209. AXPYU_K(m, 0, 0,
  210. #ifndef COMPLEX
  211. alpha,
  212. #else
  213. alpha[0], alpha[1],
  214. #endif
  215. buffer + range_n[num_cpu - 1] * COMPSIZE, 1, y, incy, NULL, 0);
  216. #else
  217. for (i = 1; i < num_cpu; i ++) {
  218. AXPYU_K(m - range_m[i], 0, 0, ONE,
  219. #ifdef COMPLEX
  220. ZERO,
  221. #endif
  222. buffer + (range_n[i] + range_m[i]) * COMPSIZE, 1, buffer + range_m[i] * COMPSIZE, 1, NULL, 0);
  223. }
  224. AXPYU_K(m, 0, 0,
  225. #ifndef COMPLEX
  226. alpha,
  227. #else
  228. alpha[0], alpha[1],
  229. #endif
  230. buffer, 1, y, incy, NULL, 0);
  231. #endif
  232. return 0;
  233. }