You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsptrs.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. *> \brief \b ZSPTRS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSPTRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDB, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 AP( * ), B( LDB, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSPTRS solves a system of linear equations A*X = B with a complex
  39. *> symmetric matrix A stored in packed format using the factorization
  40. *> A = U*D*U**T or A = L*D*L**T computed by ZSPTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**T;
  52. *> = 'L': Lower triangular, form is A = L*D*L**T.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NRHS
  62. *> \verbatim
  63. *> NRHS is INTEGER
  64. *> The number of right hand sides, i.e., the number of columns
  65. *> of the matrix B. NRHS >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] AP
  69. *> \verbatim
  70. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  71. *> The block diagonal matrix D and the multipliers used to
  72. *> obtain the factor U or L as computed by ZSPTRF, stored as a
  73. *> packed triangular matrix.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] IPIV
  77. *> \verbatim
  78. *> IPIV is INTEGER array, dimension (N)
  79. *> Details of the interchanges and the block structure of D
  80. *> as determined by ZSPTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[in,out] B
  84. *> \verbatim
  85. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  86. *> On entry, the right hand side matrix B.
  87. *> On exit, the solution matrix X.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDB
  91. *> \verbatim
  92. *> LDB is INTEGER
  93. *> The leading dimension of the array B. LDB >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[out] INFO
  97. *> \verbatim
  98. *> INFO is INTEGER
  99. *> = 0: successful exit
  100. *> < 0: if INFO = -i, the i-th argument had an illegal value
  101. *> \endverbatim
  102. *
  103. * Authors:
  104. * ========
  105. *
  106. *> \author Univ. of Tennessee
  107. *> \author Univ. of California Berkeley
  108. *> \author Univ. of Colorado Denver
  109. *> \author NAG Ltd.
  110. *
  111. *> \date November 2011
  112. *
  113. *> \ingroup complex16OTHERcomputational
  114. *
  115. * =====================================================================
  116. SUBROUTINE ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  117. *
  118. * -- LAPACK computational routine (version 3.4.0) --
  119. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  120. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121. * November 2011
  122. *
  123. * .. Scalar Arguments ..
  124. CHARACTER UPLO
  125. INTEGER INFO, LDB, N, NRHS
  126. * ..
  127. * .. Array Arguments ..
  128. INTEGER IPIV( * )
  129. COMPLEX*16 AP( * ), B( LDB, * )
  130. * ..
  131. *
  132. * =====================================================================
  133. *
  134. * .. Parameters ..
  135. COMPLEX*16 ONE
  136. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  137. * ..
  138. * .. Local Scalars ..
  139. LOGICAL UPPER
  140. INTEGER J, K, KC, KP
  141. COMPLEX*16 AK, AKM1, AKM1K, BK, BKM1, DENOM
  142. * ..
  143. * .. External Functions ..
  144. LOGICAL LSAME
  145. EXTERNAL LSAME
  146. * ..
  147. * .. External Subroutines ..
  148. EXTERNAL XERBLA, ZGEMV, ZGERU, ZSCAL, ZSWAP
  149. * ..
  150. * .. Intrinsic Functions ..
  151. INTRINSIC MAX
  152. * ..
  153. * .. Executable Statements ..
  154. *
  155. INFO = 0
  156. UPPER = LSAME( UPLO, 'U' )
  157. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  158. INFO = -1
  159. ELSE IF( N.LT.0 ) THEN
  160. INFO = -2
  161. ELSE IF( NRHS.LT.0 ) THEN
  162. INFO = -3
  163. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  164. INFO = -7
  165. END IF
  166. IF( INFO.NE.0 ) THEN
  167. CALL XERBLA( 'ZSPTRS', -INFO )
  168. RETURN
  169. END IF
  170. *
  171. * Quick return if possible
  172. *
  173. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  174. $ RETURN
  175. *
  176. IF( UPPER ) THEN
  177. *
  178. * Solve A*X = B, where A = U*D*U**T.
  179. *
  180. * First solve U*D*X = B, overwriting B with X.
  181. *
  182. * K is the main loop index, decreasing from N to 1 in steps of
  183. * 1 or 2, depending on the size of the diagonal blocks.
  184. *
  185. K = N
  186. KC = N*( N+1 ) / 2 + 1
  187. 10 CONTINUE
  188. *
  189. * If K < 1, exit from loop.
  190. *
  191. IF( K.LT.1 )
  192. $ GO TO 30
  193. *
  194. KC = KC - K
  195. IF( IPIV( K ).GT.0 ) THEN
  196. *
  197. * 1 x 1 diagonal block
  198. *
  199. * Interchange rows K and IPIV(K).
  200. *
  201. KP = IPIV( K )
  202. IF( KP.NE.K )
  203. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  204. *
  205. * Multiply by inv(U(K)), where U(K) is the transformation
  206. * stored in column K of A.
  207. *
  208. CALL ZGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  209. $ B( 1, 1 ), LDB )
  210. *
  211. * Multiply by the inverse of the diagonal block.
  212. *
  213. CALL ZSCAL( NRHS, ONE / AP( KC+K-1 ), B( K, 1 ), LDB )
  214. K = K - 1
  215. ELSE
  216. *
  217. * 2 x 2 diagonal block
  218. *
  219. * Interchange rows K-1 and -IPIV(K).
  220. *
  221. KP = -IPIV( K )
  222. IF( KP.NE.K-1 )
  223. $ CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  224. *
  225. * Multiply by inv(U(K)), where U(K) is the transformation
  226. * stored in columns K-1 and K of A.
  227. *
  228. CALL ZGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  229. $ B( 1, 1 ), LDB )
  230. CALL ZGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
  231. $ B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
  232. *
  233. * Multiply by the inverse of the diagonal block.
  234. *
  235. AKM1K = AP( KC+K-2 )
  236. AKM1 = AP( KC-1 ) / AKM1K
  237. AK = AP( KC+K-1 ) / AKM1K
  238. DENOM = AKM1*AK - ONE
  239. DO 20 J = 1, NRHS
  240. BKM1 = B( K-1, J ) / AKM1K
  241. BK = B( K, J ) / AKM1K
  242. B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  243. B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  244. 20 CONTINUE
  245. KC = KC - K + 1
  246. K = K - 2
  247. END IF
  248. *
  249. GO TO 10
  250. 30 CONTINUE
  251. *
  252. * Next solve U**T*X = B, overwriting B with X.
  253. *
  254. * K is the main loop index, increasing from 1 to N in steps of
  255. * 1 or 2, depending on the size of the diagonal blocks.
  256. *
  257. K = 1
  258. KC = 1
  259. 40 CONTINUE
  260. *
  261. * If K > N, exit from loop.
  262. *
  263. IF( K.GT.N )
  264. $ GO TO 50
  265. *
  266. IF( IPIV( K ).GT.0 ) THEN
  267. *
  268. * 1 x 1 diagonal block
  269. *
  270. * Multiply by inv(U**T(K)), where U(K) is the transformation
  271. * stored in column K of A.
  272. *
  273. CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),
  274. $ 1, ONE, B( K, 1 ), LDB )
  275. *
  276. * Interchange rows K and IPIV(K).
  277. *
  278. KP = IPIV( K )
  279. IF( KP.NE.K )
  280. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  281. KC = KC + K
  282. K = K + 1
  283. ELSE
  284. *
  285. * 2 x 2 diagonal block
  286. *
  287. * Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
  288. * stored in columns K and K+1 of A.
  289. *
  290. CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),
  291. $ 1, ONE, B( K, 1 ), LDB )
  292. CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
  293. $ AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
  294. *
  295. * Interchange rows K and -IPIV(K).
  296. *
  297. KP = -IPIV( K )
  298. IF( KP.NE.K )
  299. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  300. KC = KC + 2*K + 1
  301. K = K + 2
  302. END IF
  303. *
  304. GO TO 40
  305. 50 CONTINUE
  306. *
  307. ELSE
  308. *
  309. * Solve A*X = B, where A = L*D*L**T.
  310. *
  311. * First solve L*D*X = B, overwriting B with X.
  312. *
  313. * K is the main loop index, increasing from 1 to N in steps of
  314. * 1 or 2, depending on the size of the diagonal blocks.
  315. *
  316. K = 1
  317. KC = 1
  318. 60 CONTINUE
  319. *
  320. * If K > N, exit from loop.
  321. *
  322. IF( K.GT.N )
  323. $ GO TO 80
  324. *
  325. IF( IPIV( K ).GT.0 ) THEN
  326. *
  327. * 1 x 1 diagonal block
  328. *
  329. * Interchange rows K and IPIV(K).
  330. *
  331. KP = IPIV( K )
  332. IF( KP.NE.K )
  333. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  334. *
  335. * Multiply by inv(L(K)), where L(K) is the transformation
  336. * stored in column K of A.
  337. *
  338. IF( K.LT.N )
  339. $ CALL ZGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
  340. $ LDB, B( K+1, 1 ), LDB )
  341. *
  342. * Multiply by the inverse of the diagonal block.
  343. *
  344. CALL ZSCAL( NRHS, ONE / AP( KC ), B( K, 1 ), LDB )
  345. KC = KC + N - K + 1
  346. K = K + 1
  347. ELSE
  348. *
  349. * 2 x 2 diagonal block
  350. *
  351. * Interchange rows K+1 and -IPIV(K).
  352. *
  353. KP = -IPIV( K )
  354. IF( KP.NE.K+1 )
  355. $ CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  356. *
  357. * Multiply by inv(L(K)), where L(K) is the transformation
  358. * stored in columns K and K+1 of A.
  359. *
  360. IF( K.LT.N-1 ) THEN
  361. CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
  362. $ LDB, B( K+2, 1 ), LDB )
  363. CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
  364. $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  365. END IF
  366. *
  367. * Multiply by the inverse of the diagonal block.
  368. *
  369. AKM1K = AP( KC+1 )
  370. AKM1 = AP( KC ) / AKM1K
  371. AK = AP( KC+N-K+1 ) / AKM1K
  372. DENOM = AKM1*AK - ONE
  373. DO 70 J = 1, NRHS
  374. BKM1 = B( K, J ) / AKM1K
  375. BK = B( K+1, J ) / AKM1K
  376. B( K, J ) = ( AK*BKM1-BK ) / DENOM
  377. B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  378. 70 CONTINUE
  379. KC = KC + 2*( N-K ) + 1
  380. K = K + 2
  381. END IF
  382. *
  383. GO TO 60
  384. 80 CONTINUE
  385. *
  386. * Next solve L**T*X = B, overwriting B with X.
  387. *
  388. * K is the main loop index, decreasing from N to 1 in steps of
  389. * 1 or 2, depending on the size of the diagonal blocks.
  390. *
  391. K = N
  392. KC = N*( N+1 ) / 2 + 1
  393. 90 CONTINUE
  394. *
  395. * If K < 1, exit from loop.
  396. *
  397. IF( K.LT.1 )
  398. $ GO TO 100
  399. *
  400. KC = KC - ( N-K+1 )
  401. IF( IPIV( K ).GT.0 ) THEN
  402. *
  403. * 1 x 1 diagonal block
  404. *
  405. * Multiply by inv(L**T(K)), where L(K) is the transformation
  406. * stored in column K of A.
  407. *
  408. IF( K.LT.N )
  409. $ CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  410. $ LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  411. *
  412. * Interchange rows K and IPIV(K).
  413. *
  414. KP = IPIV( K )
  415. IF( KP.NE.K )
  416. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  417. K = K - 1
  418. ELSE
  419. *
  420. * 2 x 2 diagonal block
  421. *
  422. * Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
  423. * stored in columns K-1 and K of A.
  424. *
  425. IF( K.LT.N ) THEN
  426. CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  427. $ LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  428. CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  429. $ LDB, AP( KC-( N-K ) ), 1, ONE, B( K-1, 1 ),
  430. $ LDB )
  431. END IF
  432. *
  433. * Interchange rows K and -IPIV(K).
  434. *
  435. KP = -IPIV( K )
  436. IF( KP.NE.K )
  437. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  438. KC = KC - ( N-K+2 )
  439. K = K - 2
  440. END IF
  441. *
  442. GO TO 90
  443. 100 CONTINUE
  444. END IF
  445. *
  446. RETURN
  447. *
  448. * End of ZSPTRS
  449. *
  450. END