You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zggsvd.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. *> \brief <b> ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGGSVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  22. * LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
  23. * RWORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBQ, JOBU, JOBV
  27. * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IWORK( * )
  31. * DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
  32. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  33. * $ U( LDU, * ), V( LDV, * ), WORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> ZGGSVD computes the generalized singular value decomposition (GSVD)
  43. *> of an M-by-N complex matrix A and P-by-N complex matrix B:
  44. *>
  45. *> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
  46. *>
  47. *> where U, V and Q are unitary matrices.
  48. *> Let K+L = the effective numerical rank of the
  49. *> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
  50. *> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
  51. *> matrices and of the following structures, respectively:
  52. *>
  53. *> If M-K-L >= 0,
  54. *>
  55. *> K L
  56. *> D1 = K ( I 0 )
  57. *> L ( 0 C )
  58. *> M-K-L ( 0 0 )
  59. *>
  60. *> K L
  61. *> D2 = L ( 0 S )
  62. *> P-L ( 0 0 )
  63. *>
  64. *> N-K-L K L
  65. *> ( 0 R ) = K ( 0 R11 R12 )
  66. *> L ( 0 0 R22 )
  67. *> where
  68. *>
  69. *> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
  70. *> S = diag( BETA(K+1), ... , BETA(K+L) ),
  71. *> C**2 + S**2 = I.
  72. *>
  73. *> R is stored in A(1:K+L,N-K-L+1:N) on exit.
  74. *>
  75. *> If M-K-L < 0,
  76. *>
  77. *> K M-K K+L-M
  78. *> D1 = K ( I 0 0 )
  79. *> M-K ( 0 C 0 )
  80. *>
  81. *> K M-K K+L-M
  82. *> D2 = M-K ( 0 S 0 )
  83. *> K+L-M ( 0 0 I )
  84. *> P-L ( 0 0 0 )
  85. *>
  86. *> N-K-L K M-K K+L-M
  87. *> ( 0 R ) = K ( 0 R11 R12 R13 )
  88. *> M-K ( 0 0 R22 R23 )
  89. *> K+L-M ( 0 0 0 R33 )
  90. *>
  91. *> where
  92. *>
  93. *> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
  94. *> S = diag( BETA(K+1), ... , BETA(M) ),
  95. *> C**2 + S**2 = I.
  96. *>
  97. *> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
  98. *> ( 0 R22 R23 )
  99. *> in B(M-K+1:L,N+M-K-L+1:N) on exit.
  100. *>
  101. *> The routine computes C, S, R, and optionally the unitary
  102. *> transformation matrices U, V and Q.
  103. *>
  104. *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
  105. *> A and B implicitly gives the SVD of A*inv(B):
  106. *> A*inv(B) = U*(D1*inv(D2))*V**H.
  107. *> If ( A**H,B**H)**H has orthnormal columns, then the GSVD of A and B is also
  108. *> equal to the CS decomposition of A and B. Furthermore, the GSVD can
  109. *> be used to derive the solution of the eigenvalue problem:
  110. *> A**H*A x = lambda* B**H*B x.
  111. *> In some literature, the GSVD of A and B is presented in the form
  112. *> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
  113. *> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
  114. *> ``diagonal''. The former GSVD form can be converted to the latter
  115. *> form by taking the nonsingular matrix X as
  116. *>
  117. *> X = Q*( I 0 )
  118. *> ( 0 inv(R) )
  119. *> \endverbatim
  120. *
  121. * Arguments:
  122. * ==========
  123. *
  124. *> \param[in] JOBU
  125. *> \verbatim
  126. *> JOBU is CHARACTER*1
  127. *> = 'U': Unitary matrix U is computed;
  128. *> = 'N': U is not computed.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] JOBV
  132. *> \verbatim
  133. *> JOBV is CHARACTER*1
  134. *> = 'V': Unitary matrix V is computed;
  135. *> = 'N': V is not computed.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] JOBQ
  139. *> \verbatim
  140. *> JOBQ is CHARACTER*1
  141. *> = 'Q': Unitary matrix Q is computed;
  142. *> = 'N': Q is not computed.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] M
  146. *> \verbatim
  147. *> M is INTEGER
  148. *> The number of rows of the matrix A. M >= 0.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] N
  152. *> \verbatim
  153. *> N is INTEGER
  154. *> The number of columns of the matrices A and B. N >= 0.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] P
  158. *> \verbatim
  159. *> P is INTEGER
  160. *> The number of rows of the matrix B. P >= 0.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] K
  164. *> \verbatim
  165. *> K is INTEGER
  166. *> \endverbatim
  167. *>
  168. *> \param[out] L
  169. *> \verbatim
  170. *> L is INTEGER
  171. *>
  172. *> On exit, K and L specify the dimension of the subblocks
  173. *> described in Purpose.
  174. *> K + L = effective numerical rank of (A**H,B**H)**H.
  175. *> \endverbatim
  176. *>
  177. *> \param[in,out] A
  178. *> \verbatim
  179. *> A is COMPLEX*16 array, dimension (LDA,N)
  180. *> On entry, the M-by-N matrix A.
  181. *> On exit, A contains the triangular matrix R, or part of R.
  182. *> See Purpose for details.
  183. *> \endverbatim
  184. *>
  185. *> \param[in] LDA
  186. *> \verbatim
  187. *> LDA is INTEGER
  188. *> The leading dimension of the array A. LDA >= max(1,M).
  189. *> \endverbatim
  190. *>
  191. *> \param[in,out] B
  192. *> \verbatim
  193. *> B is COMPLEX*16 array, dimension (LDB,N)
  194. *> On entry, the P-by-N matrix B.
  195. *> On exit, B contains part of the triangular matrix R if
  196. *> M-K-L < 0. See Purpose for details.
  197. *> \endverbatim
  198. *>
  199. *> \param[in] LDB
  200. *> \verbatim
  201. *> LDB is INTEGER
  202. *> The leading dimension of the array B. LDB >= max(1,P).
  203. *> \endverbatim
  204. *>
  205. *> \param[out] ALPHA
  206. *> \verbatim
  207. *> ALPHA is DOUBLE PRECISION array, dimension (N)
  208. *> \endverbatim
  209. *>
  210. *> \param[out] BETA
  211. *> \verbatim
  212. *> BETA is DOUBLE PRECISION array, dimension (N)
  213. *>
  214. *> On exit, ALPHA and BETA contain the generalized singular
  215. *> value pairs of A and B;
  216. *> ALPHA(1:K) = 1,
  217. *> BETA(1:K) = 0,
  218. *> and if M-K-L >= 0,
  219. *> ALPHA(K+1:K+L) = C,
  220. *> BETA(K+1:K+L) = S,
  221. *> or if M-K-L < 0,
  222. *> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
  223. *> BETA(K+1:M) =S, BETA(M+1:K+L) =1
  224. *> and
  225. *> ALPHA(K+L+1:N) = 0
  226. *> BETA(K+L+1:N) = 0
  227. *> \endverbatim
  228. *>
  229. *> \param[out] U
  230. *> \verbatim
  231. *> U is COMPLEX*16 array, dimension (LDU,M)
  232. *> If JOBU = 'U', U contains the M-by-M unitary matrix U.
  233. *> If JOBU = 'N', U is not referenced.
  234. *> \endverbatim
  235. *>
  236. *> \param[in] LDU
  237. *> \verbatim
  238. *> LDU is INTEGER
  239. *> The leading dimension of the array U. LDU >= max(1,M) if
  240. *> JOBU = 'U'; LDU >= 1 otherwise.
  241. *> \endverbatim
  242. *>
  243. *> \param[out] V
  244. *> \verbatim
  245. *> V is COMPLEX*16 array, dimension (LDV,P)
  246. *> If JOBV = 'V', V contains the P-by-P unitary matrix V.
  247. *> If JOBV = 'N', V is not referenced.
  248. *> \endverbatim
  249. *>
  250. *> \param[in] LDV
  251. *> \verbatim
  252. *> LDV is INTEGER
  253. *> The leading dimension of the array V. LDV >= max(1,P) if
  254. *> JOBV = 'V'; LDV >= 1 otherwise.
  255. *> \endverbatim
  256. *>
  257. *> \param[out] Q
  258. *> \verbatim
  259. *> Q is COMPLEX*16 array, dimension (LDQ,N)
  260. *> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
  261. *> If JOBQ = 'N', Q is not referenced.
  262. *> \endverbatim
  263. *>
  264. *> \param[in] LDQ
  265. *> \verbatim
  266. *> LDQ is INTEGER
  267. *> The leading dimension of the array Q. LDQ >= max(1,N) if
  268. *> JOBQ = 'Q'; LDQ >= 1 otherwise.
  269. *> \endverbatim
  270. *>
  271. *> \param[out] WORK
  272. *> \verbatim
  273. *> WORK is COMPLEX*16 array, dimension (max(3*N,M,P)+N)
  274. *> \endverbatim
  275. *>
  276. *> \param[out] RWORK
  277. *> \verbatim
  278. *> RWORK is DOUBLE PRECISION array, dimension (2*N)
  279. *> \endverbatim
  280. *>
  281. *> \param[out] IWORK
  282. *> \verbatim
  283. *> IWORK is INTEGER array, dimension (N)
  284. *> On exit, IWORK stores the sorting information. More
  285. *> precisely, the following loop will sort ALPHA
  286. *> for I = K+1, min(M,K+L)
  287. *> swap ALPHA(I) and ALPHA(IWORK(I))
  288. *> endfor
  289. *> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
  290. *> \endverbatim
  291. *>
  292. *> \param[out] INFO
  293. *> \verbatim
  294. *> INFO is INTEGER
  295. *> = 0: successful exit.
  296. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  297. *> > 0: if INFO = 1, the Jacobi-type procedure failed to
  298. *> converge. For further details, see subroutine ZTGSJA.
  299. *> \endverbatim
  300. *
  301. *> \par Internal Parameters:
  302. * =========================
  303. *>
  304. *> \verbatim
  305. *> TOLA DOUBLE PRECISION
  306. *> TOLB DOUBLE PRECISION
  307. *> TOLA and TOLB are the thresholds to determine the effective
  308. *> rank of (A**H,B**H)**H. Generally, they are set to
  309. *> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
  310. *> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
  311. *> The size of TOLA and TOLB may affect the size of backward
  312. *> errors of the decomposition.
  313. *> \endverbatim
  314. *
  315. * Authors:
  316. * ========
  317. *
  318. *> \author Univ. of Tennessee
  319. *> \author Univ. of California Berkeley
  320. *> \author Univ. of Colorado Denver
  321. *> \author NAG Ltd.
  322. *
  323. *> \date November 2011
  324. *
  325. *> \ingroup complex16OTHERsing
  326. *
  327. *> \par Contributors:
  328. * ==================
  329. *>
  330. *> Ming Gu and Huan Ren, Computer Science Division, University of
  331. *> California at Berkeley, USA
  332. *>
  333. * =====================================================================
  334. SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  335. $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
  336. $ RWORK, IWORK, INFO )
  337. *
  338. * -- LAPACK driver routine (version 3.4.0) --
  339. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  340. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  341. * November 2011
  342. *
  343. * .. Scalar Arguments ..
  344. CHARACTER JOBQ, JOBU, JOBV
  345. INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  346. * ..
  347. * .. Array Arguments ..
  348. INTEGER IWORK( * )
  349. DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
  350. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  351. $ U( LDU, * ), V( LDV, * ), WORK( * )
  352. * ..
  353. *
  354. * =====================================================================
  355. *
  356. * .. Local Scalars ..
  357. LOGICAL WANTQ, WANTU, WANTV
  358. INTEGER I, IBND, ISUB, J, NCYCLE
  359. DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
  360. * ..
  361. * .. External Functions ..
  362. LOGICAL LSAME
  363. DOUBLE PRECISION DLAMCH, ZLANGE
  364. EXTERNAL LSAME, DLAMCH, ZLANGE
  365. * ..
  366. * .. External Subroutines ..
  367. EXTERNAL DCOPY, XERBLA, ZGGSVP, ZTGSJA
  368. * ..
  369. * .. Intrinsic Functions ..
  370. INTRINSIC MAX, MIN
  371. * ..
  372. * .. Executable Statements ..
  373. *
  374. * Decode and test the input parameters
  375. *
  376. WANTU = LSAME( JOBU, 'U' )
  377. WANTV = LSAME( JOBV, 'V' )
  378. WANTQ = LSAME( JOBQ, 'Q' )
  379. *
  380. INFO = 0
  381. IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  382. INFO = -1
  383. ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  384. INFO = -2
  385. ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  386. INFO = -3
  387. ELSE IF( M.LT.0 ) THEN
  388. INFO = -4
  389. ELSE IF( N.LT.0 ) THEN
  390. INFO = -5
  391. ELSE IF( P.LT.0 ) THEN
  392. INFO = -6
  393. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  394. INFO = -10
  395. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  396. INFO = -12
  397. ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  398. INFO = -16
  399. ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  400. INFO = -18
  401. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  402. INFO = -20
  403. END IF
  404. IF( INFO.NE.0 ) THEN
  405. CALL XERBLA( 'ZGGSVD', -INFO )
  406. RETURN
  407. END IF
  408. *
  409. * Compute the Frobenius norm of matrices A and B
  410. *
  411. ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
  412. BNORM = ZLANGE( '1', P, N, B, LDB, RWORK )
  413. *
  414. * Get machine precision and set up threshold for determining
  415. * the effective numerical rank of the matrices A and B.
  416. *
  417. ULP = DLAMCH( 'Precision' )
  418. UNFL = DLAMCH( 'Safe Minimum' )
  419. TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
  420. TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
  421. *
  422. CALL ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
  423. $ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
  424. $ WORK, WORK( N+1 ), INFO )
  425. *
  426. * Compute the GSVD of two upper "triangular" matrices
  427. *
  428. CALL ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
  429. $ TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
  430. $ WORK, NCYCLE, INFO )
  431. *
  432. * Sort the singular values and store the pivot indices in IWORK
  433. * Copy ALPHA to RWORK, then sort ALPHA in RWORK
  434. *
  435. CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
  436. IBND = MIN( L, M-K )
  437. DO 20 I = 1, IBND
  438. *
  439. * Scan for largest ALPHA(K+I)
  440. *
  441. ISUB = I
  442. SMAX = RWORK( K+I )
  443. DO 10 J = I + 1, IBND
  444. TEMP = RWORK( K+J )
  445. IF( TEMP.GT.SMAX ) THEN
  446. ISUB = J
  447. SMAX = TEMP
  448. END IF
  449. 10 CONTINUE
  450. IF( ISUB.NE.I ) THEN
  451. RWORK( K+ISUB ) = RWORK( K+I )
  452. RWORK( K+I ) = SMAX
  453. IWORK( K+I ) = K + ISUB
  454. ELSE
  455. IWORK( K+I ) = K + I
  456. END IF
  457. 20 CONTINUE
  458. *
  459. RETURN
  460. *
  461. * End of ZGGSVD
  462. *
  463. END