|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- *> \brief \b SGBCON
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGBCON + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbcon.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbcon.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbcon.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
- * WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER NORM
- * INTEGER INFO, KL, KU, LDAB, N
- * REAL ANORM, RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * ), IWORK( * )
- * REAL AB( LDAB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGBCON estimates the reciprocal of the condition number of a real
- *> general band matrix A, in either the 1-norm or the infinity-norm,
- *> using the LU factorization computed by SGBTRF.
- *>
- *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
- *> condition number is computed as
- *> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies whether the 1-norm condition number or the
- *> infinity-norm condition number is required:
- *> = '1' or 'O': 1-norm;
- *> = 'I': Infinity-norm.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is REAL array, dimension (LDAB,N)
- *> Details of the LU factorization of the band matrix A, as
- *> computed by SGBTRF. U is stored as an upper triangular band
- *> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
- *> the multipliers used during the factorization are stored in
- *> rows KL+KU+2 to 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices; for 1 <= i <= N, row i of the matrix was
- *> interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[in] ANORM
- *> \verbatim
- *> ANORM is REAL
- *> If NORM = '1' or 'O', the 1-norm of the original matrix A.
- *> If NORM = 'I', the infinity-norm of the original matrix A.
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal of the condition number of the matrix A,
- *> computed as RCOND = 1/(norm(A) * norm(inv(A))).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup realGBcomputational
- *
- * =====================================================================
- SUBROUTINE SGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
- $ WORK, IWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER NORM
- INTEGER INFO, KL, KU, LDAB, N
- REAL ANORM, RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * ), IWORK( * )
- REAL AB( LDAB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LNOTI, ONENRM
- CHARACTER NORMIN
- INTEGER IX, J, JP, KASE, KASE1, KD, LM
- REAL AINVNM, SCALE, SMLNUM, T
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ISAMAX
- REAL SDOT, SLAMCH
- EXTERNAL LSAME, ISAMAX, SDOT, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SLACN2, SLATBS, SRSCL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
- IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KL.LT.0 ) THEN
- INFO = -3
- ELSE IF( KU.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
- INFO = -6
- ELSE IF( ANORM.LT.ZERO ) THEN
- INFO = -8
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGBCON', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- RCOND = ZERO
- IF( N.EQ.0 ) THEN
- RCOND = ONE
- RETURN
- ELSE IF( ANORM.EQ.ZERO ) THEN
- RETURN
- END IF
- *
- SMLNUM = SLAMCH( 'Safe minimum' )
- *
- * Estimate the norm of inv(A).
- *
- AINVNM = ZERO
- NORMIN = 'N'
- IF( ONENRM ) THEN
- KASE1 = 1
- ELSE
- KASE1 = 2
- END IF
- KD = KL + KU + 1
- LNOTI = KL.GT.0
- KASE = 0
- 10 CONTINUE
- CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.KASE1 ) THEN
- *
- * Multiply by inv(L).
- *
- IF( LNOTI ) THEN
- DO 20 J = 1, N - 1
- LM = MIN( KL, N-J )
- JP = IPIV( J )
- T = WORK( JP )
- IF( JP.NE.J ) THEN
- WORK( JP ) = WORK( J )
- WORK( J ) = T
- END IF
- CALL SAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
- 20 CONTINUE
- END IF
- *
- * Multiply by inv(U).
- *
- CALL SLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
- $ KL+KU, AB, LDAB, WORK, SCALE, WORK( 2*N+1 ),
- $ INFO )
- ELSE
- *
- * Multiply by inv(U**T).
- *
- CALL SLATBS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N,
- $ KL+KU, AB, LDAB, WORK, SCALE, WORK( 2*N+1 ),
- $ INFO )
- *
- * Multiply by inv(L**T).
- *
- IF( LNOTI ) THEN
- DO 30 J = N - 1, 1, -1
- LM = MIN( KL, N-J )
- WORK( J ) = WORK( J ) - SDOT( LM, AB( KD+1, J ), 1,
- $ WORK( J+1 ), 1 )
- JP = IPIV( J )
- IF( JP.NE.J ) THEN
- T = WORK( JP )
- WORK( JP ) = WORK( J )
- WORK( J ) = T
- END IF
- 30 CONTINUE
- END IF
- END IF
- *
- * Divide X by 1/SCALE if doing so will not cause overflow.
- *
- NORMIN = 'Y'
- IF( SCALE.NE.ONE ) THEN
- IX = ISAMAX( N, WORK, 1 )
- IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
- $ GO TO 40
- CALL SRSCL( N, SCALE, WORK, 1 )
- END IF
- GO TO 10
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM.NE.ZERO )
- $ RCOND = ( ONE / AINVNM ) / ANORM
- *
- 40 CONTINUE
- RETURN
- *
- * End of SGBCON
- *
- END
|