You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgegs.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541
  1. *> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGEGS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
  22. * ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
  23. * LWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBVSL, JOBVSR
  27. * INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  31. * $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
  32. * $ VSR( LDVSR, * ), WORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> This routine is deprecated and has been replaced by routine DGGES.
  42. *>
  43. *> DGEGS computes the eigenvalues, real Schur form, and, optionally,
  44. *> left and or/right Schur vectors of a real matrix pair (A,B).
  45. *> Given two square matrices A and B, the generalized real Schur
  46. *> factorization has the form
  47. *>
  48. *> A = Q*S*Z**T, B = Q*T*Z**T
  49. *>
  50. *> where Q and Z are orthogonal matrices, T is upper triangular, and S
  51. *> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
  52. *> blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
  53. *> of eigenvalues of (A,B). The columns of Q are the left Schur vectors
  54. *> and the columns of Z are the right Schur vectors.
  55. *>
  56. *> If only the eigenvalues of (A,B) are needed, the driver routine
  57. *> DGEGV should be used instead. See DGEGV for a description of the
  58. *> eigenvalues of the generalized nonsymmetric eigenvalue problem
  59. *> (GNEP).
  60. *> \endverbatim
  61. *
  62. * Arguments:
  63. * ==========
  64. *
  65. *> \param[in] JOBVSL
  66. *> \verbatim
  67. *> JOBVSL is CHARACTER*1
  68. *> = 'N': do not compute the left Schur vectors;
  69. *> = 'V': compute the left Schur vectors (returned in VSL).
  70. *> \endverbatim
  71. *>
  72. *> \param[in] JOBVSR
  73. *> \verbatim
  74. *> JOBVSR is CHARACTER*1
  75. *> = 'N': do not compute the right Schur vectors;
  76. *> = 'V': compute the right Schur vectors (returned in VSR).
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrices A, B, VSL, and VSR. N >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in,out] A
  86. *> \verbatim
  87. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  88. *> On entry, the matrix A.
  89. *> On exit, the upper quasi-triangular matrix S from the
  90. *> generalized real Schur factorization.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDA
  94. *> \verbatim
  95. *> LDA is INTEGER
  96. *> The leading dimension of A. LDA >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[in,out] B
  100. *> \verbatim
  101. *> B is DOUBLE PRECISION array, dimension (LDB, N)
  102. *> On entry, the matrix B.
  103. *> On exit, the upper triangular matrix T from the generalized
  104. *> real Schur factorization.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDB
  108. *> \verbatim
  109. *> LDB is INTEGER
  110. *> The leading dimension of B. LDB >= max(1,N).
  111. *> \endverbatim
  112. *>
  113. *> \param[out] ALPHAR
  114. *> \verbatim
  115. *> ALPHAR is DOUBLE PRECISION array, dimension (N)
  116. *> The real parts of each scalar alpha defining an eigenvalue
  117. *> of GNEP.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] ALPHAI
  121. *> \verbatim
  122. *> ALPHAI is DOUBLE PRECISION array, dimension (N)
  123. *> The imaginary parts of each scalar alpha defining an
  124. *> eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
  125. *> eigenvalue is real; if positive, then the j-th and (j+1)-st
  126. *> eigenvalues are a complex conjugate pair, with
  127. *> ALPHAI(j+1) = -ALPHAI(j).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] BETA
  131. *> \verbatim
  132. *> BETA is DOUBLE PRECISION array, dimension (N)
  133. *> The scalars beta that define the eigenvalues of GNEP.
  134. *> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
  135. *> beta = BETA(j) represent the j-th eigenvalue of the matrix
  136. *> pair (A,B), in one of the forms lambda = alpha/beta or
  137. *> mu = beta/alpha. Since either lambda or mu may overflow,
  138. *> they should not, in general, be computed.
  139. *> \endverbatim
  140. *>
  141. *> \param[out] VSL
  142. *> \verbatim
  143. *> VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
  144. *> If JOBVSL = 'V', the matrix of left Schur vectors Q.
  145. *> Not referenced if JOBVSL = 'N'.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDVSL
  149. *> \verbatim
  150. *> LDVSL is INTEGER
  151. *> The leading dimension of the matrix VSL. LDVSL >=1, and
  152. *> if JOBVSL = 'V', LDVSL >= N.
  153. *> \endverbatim
  154. *>
  155. *> \param[out] VSR
  156. *> \verbatim
  157. *> VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
  158. *> If JOBVSR = 'V', the matrix of right Schur vectors Z.
  159. *> Not referenced if JOBVSR = 'N'.
  160. *> \endverbatim
  161. *>
  162. *> \param[in] LDVSR
  163. *> \verbatim
  164. *> LDVSR is INTEGER
  165. *> The leading dimension of the matrix VSR. LDVSR >= 1, and
  166. *> if JOBVSR = 'V', LDVSR >= N.
  167. *> \endverbatim
  168. *>
  169. *> \param[out] WORK
  170. *> \verbatim
  171. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  172. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  173. *> \endverbatim
  174. *>
  175. *> \param[in] LWORK
  176. *> \verbatim
  177. *> LWORK is INTEGER
  178. *> The dimension of the array WORK. LWORK >= max(1,4*N).
  179. *> For good performance, LWORK must generally be larger.
  180. *> To compute the optimal value of LWORK, call ILAENV to get
  181. *> blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
  182. *> NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
  183. *> The optimal LWORK is 2*N + N*(NB+1).
  184. *>
  185. *> If LWORK = -1, then a workspace query is assumed; the routine
  186. *> only calculates the optimal size of the WORK array, returns
  187. *> this value as the first entry of the WORK array, and no error
  188. *> message related to LWORK is issued by XERBLA.
  189. *> \endverbatim
  190. *>
  191. *> \param[out] INFO
  192. *> \verbatim
  193. *> INFO is INTEGER
  194. *> = 0: successful exit
  195. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  196. *> = 1,...,N:
  197. *> The QZ iteration failed. (A,B) are not in Schur
  198. *> form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
  199. *> be correct for j=INFO+1,...,N.
  200. *> > N: errors that usually indicate LAPACK problems:
  201. *> =N+1: error return from DGGBAL
  202. *> =N+2: error return from DGEQRF
  203. *> =N+3: error return from DORMQR
  204. *> =N+4: error return from DORGQR
  205. *> =N+5: error return from DGGHRD
  206. *> =N+6: error return from DHGEQZ (other than failed
  207. *> iteration)
  208. *> =N+7: error return from DGGBAK (computing VSL)
  209. *> =N+8: error return from DGGBAK (computing VSR)
  210. *> =N+9: error return from DLASCL (various places)
  211. *> \endverbatim
  212. *
  213. * Authors:
  214. * ========
  215. *
  216. *> \author Univ. of Tennessee
  217. *> \author Univ. of California Berkeley
  218. *> \author Univ. of Colorado Denver
  219. *> \author NAG Ltd.
  220. *
  221. *> \date November 2011
  222. *
  223. *> \ingroup doubleGEeigen
  224. *
  225. * =====================================================================
  226. SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
  227. $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
  228. $ LWORK, INFO )
  229. *
  230. * -- LAPACK driver routine (version 3.4.0) --
  231. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  232. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  233. * November 2011
  234. *
  235. * .. Scalar Arguments ..
  236. CHARACTER JOBVSL, JOBVSR
  237. INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
  238. * ..
  239. * .. Array Arguments ..
  240. DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  241. $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
  242. $ VSR( LDVSR, * ), WORK( * )
  243. * ..
  244. *
  245. * =====================================================================
  246. *
  247. * .. Parameters ..
  248. DOUBLE PRECISION ZERO, ONE
  249. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  250. * ..
  251. * .. Local Scalars ..
  252. LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
  253. INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
  254. $ IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
  255. $ LWKOPT, NB, NB1, NB2, NB3
  256. DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  257. $ SAFMIN, SMLNUM
  258. * ..
  259. * .. External Subroutines ..
  260. EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
  261. $ DLASCL, DLASET, DORGQR, DORMQR, XERBLA
  262. * ..
  263. * .. External Functions ..
  264. LOGICAL LSAME
  265. INTEGER ILAENV
  266. DOUBLE PRECISION DLAMCH, DLANGE
  267. EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
  268. * ..
  269. * .. Intrinsic Functions ..
  270. INTRINSIC INT, MAX
  271. * ..
  272. * .. Executable Statements ..
  273. *
  274. * Decode the input arguments
  275. *
  276. IF( LSAME( JOBVSL, 'N' ) ) THEN
  277. IJOBVL = 1
  278. ILVSL = .FALSE.
  279. ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  280. IJOBVL = 2
  281. ILVSL = .TRUE.
  282. ELSE
  283. IJOBVL = -1
  284. ILVSL = .FALSE.
  285. END IF
  286. *
  287. IF( LSAME( JOBVSR, 'N' ) ) THEN
  288. IJOBVR = 1
  289. ILVSR = .FALSE.
  290. ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  291. IJOBVR = 2
  292. ILVSR = .TRUE.
  293. ELSE
  294. IJOBVR = -1
  295. ILVSR = .FALSE.
  296. END IF
  297. *
  298. * Test the input arguments
  299. *
  300. LWKMIN = MAX( 4*N, 1 )
  301. LWKOPT = LWKMIN
  302. WORK( 1 ) = LWKOPT
  303. LQUERY = ( LWORK.EQ.-1 )
  304. INFO = 0
  305. IF( IJOBVL.LE.0 ) THEN
  306. INFO = -1
  307. ELSE IF( IJOBVR.LE.0 ) THEN
  308. INFO = -2
  309. ELSE IF( N.LT.0 ) THEN
  310. INFO = -3
  311. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  312. INFO = -5
  313. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  314. INFO = -7
  315. ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  316. INFO = -12
  317. ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  318. INFO = -14
  319. ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  320. INFO = -16
  321. END IF
  322. *
  323. IF( INFO.EQ.0 ) THEN
  324. NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
  325. NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
  326. NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
  327. NB = MAX( NB1, NB2, NB3 )
  328. LOPT = 2*N + N*( NB+1 )
  329. WORK( 1 ) = LOPT
  330. END IF
  331. *
  332. IF( INFO.NE.0 ) THEN
  333. CALL XERBLA( 'DGEGS ', -INFO )
  334. RETURN
  335. ELSE IF( LQUERY ) THEN
  336. RETURN
  337. END IF
  338. *
  339. * Quick return if possible
  340. *
  341. IF( N.EQ.0 )
  342. $ RETURN
  343. *
  344. * Get machine constants
  345. *
  346. EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  347. SAFMIN = DLAMCH( 'S' )
  348. SMLNUM = N*SAFMIN / EPS
  349. BIGNUM = ONE / SMLNUM
  350. *
  351. * Scale A if max element outside range [SMLNUM,BIGNUM]
  352. *
  353. ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  354. ILASCL = .FALSE.
  355. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  356. ANRMTO = SMLNUM
  357. ILASCL = .TRUE.
  358. ELSE IF( ANRM.GT.BIGNUM ) THEN
  359. ANRMTO = BIGNUM
  360. ILASCL = .TRUE.
  361. END IF
  362. *
  363. IF( ILASCL ) THEN
  364. CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
  365. IF( IINFO.NE.0 ) THEN
  366. INFO = N + 9
  367. RETURN
  368. END IF
  369. END IF
  370. *
  371. * Scale B if max element outside range [SMLNUM,BIGNUM]
  372. *
  373. BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  374. ILBSCL = .FALSE.
  375. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  376. BNRMTO = SMLNUM
  377. ILBSCL = .TRUE.
  378. ELSE IF( BNRM.GT.BIGNUM ) THEN
  379. BNRMTO = BIGNUM
  380. ILBSCL = .TRUE.
  381. END IF
  382. *
  383. IF( ILBSCL ) THEN
  384. CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
  385. IF( IINFO.NE.0 ) THEN
  386. INFO = N + 9
  387. RETURN
  388. END IF
  389. END IF
  390. *
  391. * Permute the matrix to make it more nearly triangular
  392. * Workspace layout: (2*N words -- "work..." not actually used)
  393. * left_permutation, right_permutation, work...
  394. *
  395. ILEFT = 1
  396. IRIGHT = N + 1
  397. IWORK = IRIGHT + N
  398. CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
  399. $ WORK( IRIGHT ), WORK( IWORK ), IINFO )
  400. IF( IINFO.NE.0 ) THEN
  401. INFO = N + 1
  402. GO TO 10
  403. END IF
  404. *
  405. * Reduce B to triangular form, and initialize VSL and/or VSR
  406. * Workspace layout: ("work..." must have at least N words)
  407. * left_permutation, right_permutation, tau, work...
  408. *
  409. IROWS = IHI + 1 - ILO
  410. ICOLS = N + 1 - ILO
  411. ITAU = IWORK
  412. IWORK = ITAU + IROWS
  413. CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  414. $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
  415. IF( IINFO.GE.0 )
  416. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  417. IF( IINFO.NE.0 ) THEN
  418. INFO = N + 2
  419. GO TO 10
  420. END IF
  421. *
  422. CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  423. $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
  424. $ LWORK+1-IWORK, IINFO )
  425. IF( IINFO.GE.0 )
  426. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  427. IF( IINFO.NE.0 ) THEN
  428. INFO = N + 3
  429. GO TO 10
  430. END IF
  431. *
  432. IF( ILVSL ) THEN
  433. CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
  434. CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  435. $ VSL( ILO+1, ILO ), LDVSL )
  436. CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  437. $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
  438. $ IINFO )
  439. IF( IINFO.GE.0 )
  440. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  441. IF( IINFO.NE.0 ) THEN
  442. INFO = N + 4
  443. GO TO 10
  444. END IF
  445. END IF
  446. *
  447. IF( ILVSR )
  448. $ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
  449. *
  450. * Reduce to generalized Hessenberg form
  451. *
  452. CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  453. $ LDVSL, VSR, LDVSR, IINFO )
  454. IF( IINFO.NE.0 ) THEN
  455. INFO = N + 5
  456. GO TO 10
  457. END IF
  458. *
  459. * Perform QZ algorithm, computing Schur vectors if desired
  460. * Workspace layout: ("work..." must have at least 1 word)
  461. * left_permutation, right_permutation, work...
  462. *
  463. IWORK = ITAU
  464. CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  465. $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
  466. $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
  467. IF( IINFO.GE.0 )
  468. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  469. IF( IINFO.NE.0 ) THEN
  470. IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
  471. INFO = IINFO
  472. ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
  473. INFO = IINFO - N
  474. ELSE
  475. INFO = N + 6
  476. END IF
  477. GO TO 10
  478. END IF
  479. *
  480. * Apply permutation to VSL and VSR
  481. *
  482. IF( ILVSL ) THEN
  483. CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
  484. $ WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
  485. IF( IINFO.NE.0 ) THEN
  486. INFO = N + 7
  487. GO TO 10
  488. END IF
  489. END IF
  490. IF( ILVSR ) THEN
  491. CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
  492. $ WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
  493. IF( IINFO.NE.0 ) THEN
  494. INFO = N + 8
  495. GO TO 10
  496. END IF
  497. END IF
  498. *
  499. * Undo scaling
  500. *
  501. IF( ILASCL ) THEN
  502. CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
  503. IF( IINFO.NE.0 ) THEN
  504. INFO = N + 9
  505. RETURN
  506. END IF
  507. CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
  508. $ IINFO )
  509. IF( IINFO.NE.0 ) THEN
  510. INFO = N + 9
  511. RETURN
  512. END IF
  513. CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
  514. $ IINFO )
  515. IF( IINFO.NE.0 ) THEN
  516. INFO = N + 9
  517. RETURN
  518. END IF
  519. END IF
  520. *
  521. IF( ILBSCL ) THEN
  522. CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
  523. IF( IINFO.NE.0 ) THEN
  524. INFO = N + 9
  525. RETURN
  526. END IF
  527. CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
  528. IF( IINFO.NE.0 ) THEN
  529. INFO = N + 9
  530. RETURN
  531. END IF
  532. END IF
  533. *
  534. 10 CONTINUE
  535. WORK( 1 ) = LWKOPT
  536. *
  537. RETURN
  538. *
  539. * End of DGEGS
  540. *
  541. END