|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541 |
- *> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGEGS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
- * ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
- * LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVSL, JOBVSR
- * INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
- * $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
- * $ VSR( LDVSR, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This routine is deprecated and has been replaced by routine DGGES.
- *>
- *> DGEGS computes the eigenvalues, real Schur form, and, optionally,
- *> left and or/right Schur vectors of a real matrix pair (A,B).
- *> Given two square matrices A and B, the generalized real Schur
- *> factorization has the form
- *>
- *> A = Q*S*Z**T, B = Q*T*Z**T
- *>
- *> where Q and Z are orthogonal matrices, T is upper triangular, and S
- *> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
- *> blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
- *> of eigenvalues of (A,B). The columns of Q are the left Schur vectors
- *> and the columns of Z are the right Schur vectors.
- *>
- *> If only the eigenvalues of (A,B) are needed, the driver routine
- *> DGEGV should be used instead. See DGEGV for a description of the
- *> eigenvalues of the generalized nonsymmetric eigenvalue problem
- *> (GNEP).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVSL
- *> \verbatim
- *> JOBVSL is CHARACTER*1
- *> = 'N': do not compute the left Schur vectors;
- *> = 'V': compute the left Schur vectors (returned in VSL).
- *> \endverbatim
- *>
- *> \param[in] JOBVSR
- *> \verbatim
- *> JOBVSR is CHARACTER*1
- *> = 'N': do not compute the right Schur vectors;
- *> = 'V': compute the right Schur vectors (returned in VSR).
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A, B, VSL, and VSR. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA, N)
- *> On entry, the matrix A.
- *> On exit, the upper quasi-triangular matrix S from the
- *> generalized real Schur factorization.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB, N)
- *> On entry, the matrix B.
- *> On exit, the upper triangular matrix T from the generalized
- *> real Schur factorization.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] ALPHAR
- *> \verbatim
- *> ALPHAR is DOUBLE PRECISION array, dimension (N)
- *> The real parts of each scalar alpha defining an eigenvalue
- *> of GNEP.
- *> \endverbatim
- *>
- *> \param[out] ALPHAI
- *> \verbatim
- *> ALPHAI is DOUBLE PRECISION array, dimension (N)
- *> The imaginary parts of each scalar alpha defining an
- *> eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
- *> eigenvalue is real; if positive, then the j-th and (j+1)-st
- *> eigenvalues are a complex conjugate pair, with
- *> ALPHAI(j+1) = -ALPHAI(j).
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is DOUBLE PRECISION array, dimension (N)
- *> The scalars beta that define the eigenvalues of GNEP.
- *> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
- *> beta = BETA(j) represent the j-th eigenvalue of the matrix
- *> pair (A,B), in one of the forms lambda = alpha/beta or
- *> mu = beta/alpha. Since either lambda or mu may overflow,
- *> they should not, in general, be computed.
- *> \endverbatim
- *>
- *> \param[out] VSL
- *> \verbatim
- *> VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
- *> If JOBVSL = 'V', the matrix of left Schur vectors Q.
- *> Not referenced if JOBVSL = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVSL
- *> \verbatim
- *> LDVSL is INTEGER
- *> The leading dimension of the matrix VSL. LDVSL >=1, and
- *> if JOBVSL = 'V', LDVSL >= N.
- *> \endverbatim
- *>
- *> \param[out] VSR
- *> \verbatim
- *> VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
- *> If JOBVSR = 'V', the matrix of right Schur vectors Z.
- *> Not referenced if JOBVSR = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVSR
- *> \verbatim
- *> LDVSR is INTEGER
- *> The leading dimension of the matrix VSR. LDVSR >= 1, and
- *> if JOBVSR = 'V', LDVSR >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,4*N).
- *> For good performance, LWORK must generally be larger.
- *> To compute the optimal value of LWORK, call ILAENV to get
- *> blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
- *> NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
- *> The optimal LWORK is 2*N + N*(NB+1).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> = 1,...,N:
- *> The QZ iteration failed. (A,B) are not in Schur
- *> form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
- *> be correct for j=INFO+1,...,N.
- *> > N: errors that usually indicate LAPACK problems:
- *> =N+1: error return from DGGBAL
- *> =N+2: error return from DGEQRF
- *> =N+3: error return from DORMQR
- *> =N+4: error return from DORGQR
- *> =N+5: error return from DGGHRD
- *> =N+6: error return from DHGEQZ (other than failed
- *> iteration)
- *> =N+7: error return from DGGBAK (computing VSL)
- *> =N+8: error return from DGGBAK (computing VSR)
- *> =N+9: error return from DLASCL (various places)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup doubleGEeigen
- *
- * =====================================================================
- SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
- $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
- $ LWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVSL, JOBVSR
- INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
- $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
- $ VSR( LDVSR, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
- INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
- $ IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
- $ LWKOPT, NB, NB1, NB2, NB3
- DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
- $ SAFMIN, SMLNUM
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
- $ DLASCL, DLASET, DORGQR, DORMQR, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLANGE
- EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC INT, MAX
- * ..
- * .. Executable Statements ..
- *
- * Decode the input arguments
- *
- IF( LSAME( JOBVSL, 'N' ) ) THEN
- IJOBVL = 1
- ILVSL = .FALSE.
- ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
- IJOBVL = 2
- ILVSL = .TRUE.
- ELSE
- IJOBVL = -1
- ILVSL = .FALSE.
- END IF
- *
- IF( LSAME( JOBVSR, 'N' ) ) THEN
- IJOBVR = 1
- ILVSR = .FALSE.
- ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
- IJOBVR = 2
- ILVSR = .TRUE.
- ELSE
- IJOBVR = -1
- ILVSR = .FALSE.
- END IF
- *
- * Test the input arguments
- *
- LWKMIN = MAX( 4*N, 1 )
- LWKOPT = LWKMIN
- WORK( 1 ) = LWKOPT
- LQUERY = ( LWORK.EQ.-1 )
- INFO = 0
- IF( IJOBVL.LE.0 ) THEN
- INFO = -1
- ELSE IF( IJOBVR.LE.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
- INFO = -12
- ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
- INFO = -14
- ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -16
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
- NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
- NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
- NB = MAX( NB1, NB2, NB3 )
- LOPT = 2*N + N*( NB+1 )
- WORK( 1 ) = LOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGEGS ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
- SAFMIN = DLAMCH( 'S' )
- SMLNUM = N*SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
- ILASCL = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ANRMTO = SMLNUM
- ILASCL = .TRUE.
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ANRMTO = BIGNUM
- ILASCL = .TRUE.
- END IF
- *
- IF( ILASCL ) THEN
- CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
- *
- * Scale B if max element outside range [SMLNUM,BIGNUM]
- *
- BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
- ILBSCL = .FALSE.
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- BNRMTO = SMLNUM
- ILBSCL = .TRUE.
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- BNRMTO = BIGNUM
- ILBSCL = .TRUE.
- END IF
- *
- IF( ILBSCL ) THEN
- CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
- *
- * Permute the matrix to make it more nearly triangular
- * Workspace layout: (2*N words -- "work..." not actually used)
- * left_permutation, right_permutation, work...
- *
- ILEFT = 1
- IRIGHT = N + 1
- IWORK = IRIGHT + N
- CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), WORK( IWORK ), IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 1
- GO TO 10
- END IF
- *
- * Reduce B to triangular form, and initialize VSL and/or VSR
- * Workspace layout: ("work..." must have at least N words)
- * left_permutation, right_permutation, tau, work...
- *
- IROWS = IHI + 1 - ILO
- ICOLS = N + 1 - ILO
- ITAU = IWORK
- IWORK = ITAU + IROWS
- CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
- $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 2
- GO TO 10
- END IF
- *
- CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
- $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
- $ LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 3
- GO TO 10
- END IF
- *
- IF( ILVSL ) THEN
- CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
- CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
- $ VSL( ILO+1, ILO ), LDVSL )
- CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
- $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
- $ IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 4
- GO TO 10
- END IF
- END IF
- *
- IF( ILVSR )
- $ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
- *
- * Reduce to generalized Hessenberg form
- *
- CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
- $ LDVSL, VSR, LDVSR, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 5
- GO TO 10
- END IF
- *
- * Perform QZ algorithm, computing Schur vectors if desired
- * Workspace layout: ("work..." must have at least 1 word)
- * left_permutation, right_permutation, work...
- *
- IWORK = ITAU
- CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
- $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
- INFO = IINFO
- ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
- INFO = IINFO - N
- ELSE
- INFO = N + 6
- END IF
- GO TO 10
- END IF
- *
- * Apply permutation to VSL and VSR
- *
- IF( ILVSL ) THEN
- CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 7
- GO TO 10
- END IF
- END IF
- IF( ILVSR ) THEN
- CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 8
- GO TO 10
- END IF
- END IF
- *
- * Undo scaling
- *
- IF( ILASCL ) THEN
- CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
- *
- IF( ILBSCL ) THEN
- CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
- *
- 10 CONTINUE
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of DGEGS
- *
- END
|