You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgemm.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. *> \brief \b CGEMM
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  12. *
  13. * .. Scalar Arguments ..
  14. * COMPLEX ALPHA,BETA
  15. * INTEGER K,LDA,LDB,LDC,M,N
  16. * CHARACTER TRANSA,TRANSB
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CGEMM performs one of the matrix-matrix operations
  29. *>
  30. *> C := alpha*op( A )*op( B ) + beta*C,
  31. *>
  32. *> where op( X ) is one of
  33. *>
  34. *> op( X ) = X or op( X ) = X**T or op( X ) = X**H,
  35. *>
  36. *> alpha and beta are scalars, and A, B and C are matrices, with op( A )
  37. *> an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] TRANSA
  44. *> \verbatim
  45. *> TRANSA is CHARACTER*1
  46. *> On entry, TRANSA specifies the form of op( A ) to be used in
  47. *> the matrix multiplication as follows:
  48. *>
  49. *> TRANSA = 'N' or 'n', op( A ) = A.
  50. *>
  51. *> TRANSA = 'T' or 't', op( A ) = A**T.
  52. *>
  53. *> TRANSA = 'C' or 'c', op( A ) = A**H.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] TRANSB
  57. *> \verbatim
  58. *> TRANSB is CHARACTER*1
  59. *> On entry, TRANSB specifies the form of op( B ) to be used in
  60. *> the matrix multiplication as follows:
  61. *>
  62. *> TRANSB = 'N' or 'n', op( B ) = B.
  63. *>
  64. *> TRANSB = 'T' or 't', op( B ) = B**T.
  65. *>
  66. *> TRANSB = 'C' or 'c', op( B ) = B**H.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] M
  70. *> \verbatim
  71. *> M is INTEGER
  72. *> On entry, M specifies the number of rows of the matrix
  73. *> op( A ) and of the matrix C. M must be at least zero.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> On entry, N specifies the number of columns of the matrix
  80. *> op( B ) and the number of columns of the matrix C. N must be
  81. *> at least zero.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] K
  85. *> \verbatim
  86. *> K is INTEGER
  87. *> On entry, K specifies the number of columns of the matrix
  88. *> op( A ) and the number of rows of the matrix op( B ). K must
  89. *> be at least zero.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] ALPHA
  93. *> \verbatim
  94. *> ALPHA is COMPLEX
  95. *> On entry, ALPHA specifies the scalar alpha.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] A
  99. *> \verbatim
  100. *> A is COMPLEX array, dimension ( LDA, ka ), where ka is
  101. *> k when TRANSA = 'N' or 'n', and is m otherwise.
  102. *> Before entry with TRANSA = 'N' or 'n', the leading m by k
  103. *> part of the array A must contain the matrix A, otherwise
  104. *> the leading k by m part of the array A must contain the
  105. *> matrix A.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDA
  109. *> \verbatim
  110. *> LDA is INTEGER
  111. *> On entry, LDA specifies the first dimension of A as declared
  112. *> in the calling (sub) program. When TRANSA = 'N' or 'n' then
  113. *> LDA must be at least max( 1, m ), otherwise LDA must be at
  114. *> least max( 1, k ).
  115. *> \endverbatim
  116. *>
  117. *> \param[in] B
  118. *> \verbatim
  119. *> B is COMPLEX array, dimension ( LDB, kb ), where kb is
  120. *> n when TRANSB = 'N' or 'n', and is k otherwise.
  121. *> Before entry with TRANSB = 'N' or 'n', the leading k by n
  122. *> part of the array B must contain the matrix B, otherwise
  123. *> the leading n by k part of the array B must contain the
  124. *> matrix B.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDB
  128. *> \verbatim
  129. *> LDB is INTEGER
  130. *> On entry, LDB specifies the first dimension of B as declared
  131. *> in the calling (sub) program. When TRANSB = 'N' or 'n' then
  132. *> LDB must be at least max( 1, k ), otherwise LDB must be at
  133. *> least max( 1, n ).
  134. *> \endverbatim
  135. *>
  136. *> \param[in] BETA
  137. *> \verbatim
  138. *> BETA is COMPLEX
  139. *> On entry, BETA specifies the scalar beta. When BETA is
  140. *> supplied as zero then C need not be set on input.
  141. *> \endverbatim
  142. *>
  143. *> \param[in,out] C
  144. *> \verbatim
  145. *> C is COMPLEX array, dimension ( LDC, N )
  146. *> Before entry, the leading m by n part of the array C must
  147. *> contain the matrix C, except when beta is zero, in which
  148. *> case C need not be set on entry.
  149. *> On exit, the array C is overwritten by the m by n matrix
  150. *> ( alpha*op( A )*op( B ) + beta*C ).
  151. *> \endverbatim
  152. *>
  153. *> \param[in] LDC
  154. *> \verbatim
  155. *> LDC is INTEGER
  156. *> On entry, LDC specifies the first dimension of C as declared
  157. *> in the calling (sub) program. LDC must be at least
  158. *> max( 1, m ).
  159. *> \endverbatim
  160. *
  161. * Authors:
  162. * ========
  163. *
  164. *> \author Univ. of Tennessee
  165. *> \author Univ. of California Berkeley
  166. *> \author Univ. of Colorado Denver
  167. *> \author NAG Ltd.
  168. *
  169. *> \date December 2016
  170. *
  171. *> \ingroup complex_blas_level3
  172. *
  173. *> \par Further Details:
  174. * =====================
  175. *>
  176. *> \verbatim
  177. *>
  178. *> Level 3 Blas routine.
  179. *>
  180. *> -- Written on 8-February-1989.
  181. *> Jack Dongarra, Argonne National Laboratory.
  182. *> Iain Duff, AERE Harwell.
  183. *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
  184. *> Sven Hammarling, Numerical Algorithms Group Ltd.
  185. *> \endverbatim
  186. *>
  187. * =====================================================================
  188. SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  189. *
  190. * -- Reference BLAS level3 routine (version 3.7.0) --
  191. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  192. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193. * December 2016
  194. *
  195. * .. Scalar Arguments ..
  196. COMPLEX ALPHA,BETA
  197. INTEGER K,LDA,LDB,LDC,M,N
  198. CHARACTER TRANSA,TRANSB
  199. * ..
  200. * .. Array Arguments ..
  201. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  202. * ..
  203. *
  204. * =====================================================================
  205. *
  206. * .. External Functions ..
  207. LOGICAL LSAME
  208. EXTERNAL LSAME
  209. * ..
  210. * .. External Subroutines ..
  211. EXTERNAL XERBLA
  212. * ..
  213. * .. Intrinsic Functions ..
  214. INTRINSIC CONJG,MAX
  215. * ..
  216. * .. Local Scalars ..
  217. COMPLEX TEMP
  218. INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
  219. LOGICAL CONJA,CONJB,NOTA,NOTB
  220. * ..
  221. * .. Parameters ..
  222. COMPLEX ONE
  223. PARAMETER (ONE= (1.0E+0,0.0E+0))
  224. COMPLEX ZERO
  225. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  226. * ..
  227. *
  228. * Set NOTA and NOTB as true if A and B respectively are not
  229. * conjugated or transposed, set CONJA and CONJB as true if A and
  230. * B respectively are to be transposed but not conjugated and set
  231. * NROWA, NCOLA and NROWB as the number of rows and columns of A
  232. * and the number of rows of B respectively.
  233. *
  234. NOTA = LSAME(TRANSA,'N')
  235. NOTB = LSAME(TRANSB,'N')
  236. CONJA = LSAME(TRANSA,'C')
  237. CONJB = LSAME(TRANSB,'C')
  238. IF (NOTA) THEN
  239. NROWA = M
  240. NCOLA = K
  241. ELSE
  242. NROWA = K
  243. NCOLA = M
  244. END IF
  245. IF (NOTB) THEN
  246. NROWB = K
  247. ELSE
  248. NROWB = N
  249. END IF
  250. *
  251. * Test the input parameters.
  252. *
  253. INFO = 0
  254. IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
  255. + (.NOT.LSAME(TRANSA,'T'))) THEN
  256. INFO = 1
  257. ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
  258. + (.NOT.LSAME(TRANSB,'T'))) THEN
  259. INFO = 2
  260. ELSE IF (M.LT.0) THEN
  261. INFO = 3
  262. ELSE IF (N.LT.0) THEN
  263. INFO = 4
  264. ELSE IF (K.LT.0) THEN
  265. INFO = 5
  266. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  267. INFO = 8
  268. ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
  269. INFO = 10
  270. ELSE IF (LDC.LT.MAX(1,M)) THEN
  271. INFO = 13
  272. END IF
  273. IF (INFO.NE.0) THEN
  274. CALL XERBLA('CGEMM ',INFO)
  275. RETURN
  276. END IF
  277. *
  278. * Quick return if possible.
  279. *
  280. IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  281. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
  282. *
  283. * And when alpha.eq.zero.
  284. *
  285. IF (ALPHA.EQ.ZERO) THEN
  286. IF (BETA.EQ.ZERO) THEN
  287. DO 20 J = 1,N
  288. DO 10 I = 1,M
  289. C(I,J) = ZERO
  290. 10 CONTINUE
  291. 20 CONTINUE
  292. ELSE
  293. DO 40 J = 1,N
  294. DO 30 I = 1,M
  295. C(I,J) = BETA*C(I,J)
  296. 30 CONTINUE
  297. 40 CONTINUE
  298. END IF
  299. RETURN
  300. END IF
  301. *
  302. * Start the operations.
  303. *
  304. IF (NOTB) THEN
  305. IF (NOTA) THEN
  306. *
  307. * Form C := alpha*A*B + beta*C.
  308. *
  309. DO 90 J = 1,N
  310. IF (BETA.EQ.ZERO) THEN
  311. DO 50 I = 1,M
  312. C(I,J) = ZERO
  313. 50 CONTINUE
  314. ELSE IF (BETA.NE.ONE) THEN
  315. DO 60 I = 1,M
  316. C(I,J) = BETA*C(I,J)
  317. 60 CONTINUE
  318. END IF
  319. DO 80 L = 1,K
  320. TEMP = ALPHA*B(L,J)
  321. DO 70 I = 1,M
  322. C(I,J) = C(I,J) + TEMP*A(I,L)
  323. 70 CONTINUE
  324. 80 CONTINUE
  325. 90 CONTINUE
  326. ELSE IF (CONJA) THEN
  327. *
  328. * Form C := alpha*A**H*B + beta*C.
  329. *
  330. DO 120 J = 1,N
  331. DO 110 I = 1,M
  332. TEMP = ZERO
  333. DO 100 L = 1,K
  334. TEMP = TEMP + CONJG(A(L,I))*B(L,J)
  335. 100 CONTINUE
  336. IF (BETA.EQ.ZERO) THEN
  337. C(I,J) = ALPHA*TEMP
  338. ELSE
  339. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  340. END IF
  341. 110 CONTINUE
  342. 120 CONTINUE
  343. ELSE
  344. *
  345. * Form C := alpha*A**T*B + beta*C
  346. *
  347. DO 150 J = 1,N
  348. DO 140 I = 1,M
  349. TEMP = ZERO
  350. DO 130 L = 1,K
  351. TEMP = TEMP + A(L,I)*B(L,J)
  352. 130 CONTINUE
  353. IF (BETA.EQ.ZERO) THEN
  354. C(I,J) = ALPHA*TEMP
  355. ELSE
  356. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  357. END IF
  358. 140 CONTINUE
  359. 150 CONTINUE
  360. END IF
  361. ELSE IF (NOTA) THEN
  362. IF (CONJB) THEN
  363. *
  364. * Form C := alpha*A*B**H + beta*C.
  365. *
  366. DO 200 J = 1,N
  367. IF (BETA.EQ.ZERO) THEN
  368. DO 160 I = 1,M
  369. C(I,J) = ZERO
  370. 160 CONTINUE
  371. ELSE IF (BETA.NE.ONE) THEN
  372. DO 170 I = 1,M
  373. C(I,J) = BETA*C(I,J)
  374. 170 CONTINUE
  375. END IF
  376. DO 190 L = 1,K
  377. TEMP = ALPHA*CONJG(B(J,L))
  378. DO 180 I = 1,M
  379. C(I,J) = C(I,J) + TEMP*A(I,L)
  380. 180 CONTINUE
  381. 190 CONTINUE
  382. 200 CONTINUE
  383. ELSE
  384. *
  385. * Form C := alpha*A*B**T + beta*C
  386. *
  387. DO 250 J = 1,N
  388. IF (BETA.EQ.ZERO) THEN
  389. DO 210 I = 1,M
  390. C(I,J) = ZERO
  391. 210 CONTINUE
  392. ELSE IF (BETA.NE.ONE) THEN
  393. DO 220 I = 1,M
  394. C(I,J) = BETA*C(I,J)
  395. 220 CONTINUE
  396. END IF
  397. DO 240 L = 1,K
  398. TEMP = ALPHA*B(J,L)
  399. DO 230 I = 1,M
  400. C(I,J) = C(I,J) + TEMP*A(I,L)
  401. 230 CONTINUE
  402. 240 CONTINUE
  403. 250 CONTINUE
  404. END IF
  405. ELSE IF (CONJA) THEN
  406. IF (CONJB) THEN
  407. *
  408. * Form C := alpha*A**H*B**H + beta*C.
  409. *
  410. DO 280 J = 1,N
  411. DO 270 I = 1,M
  412. TEMP = ZERO
  413. DO 260 L = 1,K
  414. TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L))
  415. 260 CONTINUE
  416. IF (BETA.EQ.ZERO) THEN
  417. C(I,J) = ALPHA*TEMP
  418. ELSE
  419. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  420. END IF
  421. 270 CONTINUE
  422. 280 CONTINUE
  423. ELSE
  424. *
  425. * Form C := alpha*A**H*B**T + beta*C
  426. *
  427. DO 310 J = 1,N
  428. DO 300 I = 1,M
  429. TEMP = ZERO
  430. DO 290 L = 1,K
  431. TEMP = TEMP + CONJG(A(L,I))*B(J,L)
  432. 290 CONTINUE
  433. IF (BETA.EQ.ZERO) THEN
  434. C(I,J) = ALPHA*TEMP
  435. ELSE
  436. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  437. END IF
  438. 300 CONTINUE
  439. 310 CONTINUE
  440. END IF
  441. ELSE
  442. IF (CONJB) THEN
  443. *
  444. * Form C := alpha*A**T*B**H + beta*C
  445. *
  446. DO 340 J = 1,N
  447. DO 330 I = 1,M
  448. TEMP = ZERO
  449. DO 320 L = 1,K
  450. TEMP = TEMP + A(L,I)*CONJG(B(J,L))
  451. 320 CONTINUE
  452. IF (BETA.EQ.ZERO) THEN
  453. C(I,J) = ALPHA*TEMP
  454. ELSE
  455. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  456. END IF
  457. 330 CONTINUE
  458. 340 CONTINUE
  459. ELSE
  460. *
  461. * Form C := alpha*A**T*B**T + beta*C
  462. *
  463. DO 370 J = 1,N
  464. DO 360 I = 1,M
  465. TEMP = ZERO
  466. DO 350 L = 1,K
  467. TEMP = TEMP + A(L,I)*B(J,L)
  468. 350 CONTINUE
  469. IF (BETA.EQ.ZERO) THEN
  470. C(I,J) = ALPHA*TEMP
  471. ELSE
  472. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  473. END IF
  474. 360 CONTINUE
  475. 370 CONTINUE
  476. END IF
  477. END IF
  478. *
  479. RETURN
  480. *
  481. * End of CGEMM .
  482. *
  483. END