You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strmvf.f 8.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. SUBROUTINE STRMVF ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
  2. * .. Scalar Arguments ..
  3. INTEGER INCX, LDA, N
  4. CHARACTER*1 DIAG, TRANS, UPLO
  5. * .. Array Arguments ..
  6. REAL A( LDA, * ), X( * )
  7. * ..
  8. *
  9. * Purpose
  10. * =======
  11. *
  12. * STRMV performs one of the matrix-vector operations
  13. *
  14. * x := A*x, or x := A'*x,
  15. *
  16. * where x is an n element vector and A is an n by n unit, or non-unit,
  17. * upper or lower triangular matrix.
  18. *
  19. * Parameters
  20. * ==========
  21. *
  22. * UPLO - CHARACTER*1.
  23. * On entry, UPLO specifies whether the matrix is an upper or
  24. * lower triangular matrix as follows:
  25. *
  26. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  27. *
  28. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  29. *
  30. * Unchanged on exit.
  31. *
  32. * TRANS - CHARACTER*1.
  33. * On entry, TRANS specifies the operation to be performed as
  34. * follows:
  35. *
  36. * TRANS = 'N' or 'n' x := A*x.
  37. *
  38. * TRANS = 'T' or 't' x := A'*x.
  39. *
  40. * TRANS = 'C' or 'c' x := A'*x.
  41. *
  42. * Unchanged on exit.
  43. *
  44. * DIAG - CHARACTER*1.
  45. * On entry, DIAG specifies whether or not A is unit
  46. * triangular as follows:
  47. *
  48. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  49. *
  50. * DIAG = 'N' or 'n' A is not assumed to be unit
  51. * triangular.
  52. *
  53. * Unchanged on exit.
  54. *
  55. * N - INTEGER.
  56. * On entry, N specifies the order of the matrix A.
  57. * N must be at least zero.
  58. * Unchanged on exit.
  59. *
  60. * A - REAL array of DIMENSION ( LDA, n ).
  61. * Before entry with UPLO = 'U' or 'u', the leading n by n
  62. * upper triangular part of the array A must contain the upper
  63. * triangular matrix and the strictly lower triangular part of
  64. * A is not referenced.
  65. * Before entry with UPLO = 'L' or 'l', the leading n by n
  66. * lower triangular part of the array A must contain the lower
  67. * triangular matrix and the strictly upper triangular part of
  68. * A is not referenced.
  69. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  70. * A are not referenced either, but are assumed to be unity.
  71. * Unchanged on exit.
  72. *
  73. * LDA - INTEGER.
  74. * On entry, LDA specifies the first dimension of A as declared
  75. * in the calling (sub) program. LDA must be at least
  76. * max( 1, n ).
  77. * Unchanged on exit.
  78. *
  79. * X - REAL array of dimension at least
  80. * ( 1 + ( n - 1 )*abs( INCX ) ).
  81. * Before entry, the incremented array X must contain the n
  82. * element vector x. On exit, X is overwritten with the
  83. * tranformed vector x.
  84. *
  85. * INCX - INTEGER.
  86. * On entry, INCX specifies the increment for the elements of
  87. * X. INCX must not be zero.
  88. * Unchanged on exit.
  89. *
  90. *
  91. * Level 2 Blas routine.
  92. *
  93. * -- Written on 22-October-1986.
  94. * Jack Dongarra, Argonne National Lab.
  95. * Jeremy Du Croz, Nag Central Office.
  96. * Sven Hammarling, Nag Central Office.
  97. * Richard Hanson, Sandia National Labs.
  98. *
  99. *
  100. * .. Parameters ..
  101. REAL ZERO
  102. PARAMETER ( ZERO = 0.0E+0 )
  103. * .. Local Scalars ..
  104. REAL TEMP
  105. INTEGER I, INFO, IX, J, JX, KX
  106. LOGICAL NOUNIT
  107. * .. External Functions ..
  108. LOGICAL LSAME
  109. EXTERNAL LSAME
  110. * .. External Subroutines ..
  111. EXTERNAL XERBLA
  112. * .. Intrinsic Functions ..
  113. INTRINSIC MAX
  114. * ..
  115. * .. Executable Statements ..
  116. *
  117. * Test the input parameters.
  118. *
  119. INFO = 0
  120. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  121. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  122. INFO = 1
  123. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  124. $ .NOT.LSAME( TRANS, 'T' ).AND.
  125. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  126. INFO = 2
  127. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  128. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  129. INFO = 3
  130. ELSE IF( N.LT.0 )THEN
  131. INFO = 4
  132. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  133. INFO = 6
  134. ELSE IF( INCX.EQ.0 )THEN
  135. INFO = 8
  136. END IF
  137. IF( INFO.NE.0 )THEN
  138. CALL XERBLA( 'STRMV ', INFO )
  139. RETURN
  140. END IF
  141. *
  142. * Quick return if possible.
  143. *
  144. IF( N.EQ.0 )
  145. $ RETURN
  146. *
  147. NOUNIT = LSAME( DIAG, 'N' )
  148. *
  149. * Set up the start point in X if the increment is not unity. This
  150. * will be ( N - 1 )*INCX too small for descending loops.
  151. *
  152. IF( INCX.LE.0 )THEN
  153. KX = 1 - ( N - 1 )*INCX
  154. ELSE IF( INCX.NE.1 )THEN
  155. KX = 1
  156. END IF
  157. *
  158. * Start the operations. In this version the elements of A are
  159. * accessed sequentially with one pass through A.
  160. *
  161. IF( LSAME( TRANS, 'N' ) )THEN
  162. *
  163. * Form x := A*x.
  164. *
  165. IF( LSAME( UPLO, 'U' ) )THEN
  166. IF( INCX.EQ.1 )THEN
  167. DO 20, J = 1, N
  168. IF( X( J ).NE.ZERO )THEN
  169. TEMP = X( J )
  170. DO 10, I = 1, J - 1
  171. X( I ) = X( I ) + TEMP*A( I, J )
  172. 10 CONTINUE
  173. IF( NOUNIT )
  174. $ X( J ) = X( J )*A( J, J )
  175. END IF
  176. 20 CONTINUE
  177. ELSE
  178. JX = KX
  179. DO 40, J = 1, N
  180. IF( X( JX ).NE.ZERO )THEN
  181. TEMP = X( JX )
  182. IX = KX
  183. DO 30, I = 1, J - 1
  184. X( IX ) = X( IX ) + TEMP*A( I, J )
  185. IX = IX + INCX
  186. 30 CONTINUE
  187. IF( NOUNIT )
  188. $ X( JX ) = X( JX )*A( J, J )
  189. END IF
  190. JX = JX + INCX
  191. 40 CONTINUE
  192. END IF
  193. ELSE
  194. IF( INCX.EQ.1 )THEN
  195. DO 60, J = N, 1, -1
  196. IF( X( J ).NE.ZERO )THEN
  197. TEMP = X( J )
  198. DO 50, I = N, J + 1, -1
  199. X( I ) = X( I ) + TEMP*A( I, J )
  200. 50 CONTINUE
  201. IF( NOUNIT )
  202. $ X( J ) = X( J )*A( J, J )
  203. END IF
  204. 60 CONTINUE
  205. ELSE
  206. KX = KX + ( N - 1 )*INCX
  207. JX = KX
  208. DO 80, J = N, 1, -1
  209. IF( X( JX ).NE.ZERO )THEN
  210. TEMP = X( JX )
  211. IX = KX
  212. DO 70, I = N, J + 1, -1
  213. X( IX ) = X( IX ) + TEMP*A( I, J )
  214. IX = IX - INCX
  215. 70 CONTINUE
  216. IF( NOUNIT )
  217. $ X( JX ) = X( JX )*A( J, J )
  218. END IF
  219. JX = JX - INCX
  220. 80 CONTINUE
  221. END IF
  222. END IF
  223. ELSE
  224. *
  225. * Form x := A'*x.
  226. *
  227. IF( LSAME( UPLO, 'U' ) )THEN
  228. IF( INCX.EQ.1 )THEN
  229. DO 100, J = N, 1, -1
  230. TEMP = X( J )
  231. IF( NOUNIT )
  232. $ TEMP = TEMP*A( J, J )
  233. DO 90, I = J - 1, 1, -1
  234. TEMP = TEMP + A( I, J )*X( I )
  235. 90 CONTINUE
  236. X( J ) = TEMP
  237. 100 CONTINUE
  238. ELSE
  239. JX = KX + ( N - 1 )*INCX
  240. DO 120, J = N, 1, -1
  241. TEMP = X( JX )
  242. IX = JX
  243. IF( NOUNIT )
  244. $ TEMP = TEMP*A( J, J )
  245. DO 110, I = J - 1, 1, -1
  246. IX = IX - INCX
  247. TEMP = TEMP + A( I, J )*X( IX )
  248. 110 CONTINUE
  249. X( JX ) = TEMP
  250. JX = JX - INCX
  251. 120 CONTINUE
  252. END IF
  253. ELSE
  254. IF( INCX.EQ.1 )THEN
  255. DO 140, J = 1, N
  256. TEMP = X( J )
  257. IF( NOUNIT )
  258. $ TEMP = TEMP*A( J, J )
  259. DO 130, I = J + 1, N
  260. TEMP = TEMP + A( I, J )*X( I )
  261. 130 CONTINUE
  262. X( J ) = TEMP
  263. 140 CONTINUE
  264. ELSE
  265. JX = KX
  266. DO 160, J = 1, N
  267. TEMP = X( JX )
  268. IX = JX
  269. IF( NOUNIT )
  270. $ TEMP = TEMP*A( J, J )
  271. DO 150, I = J + 1, N
  272. IX = IX + INCX
  273. TEMP = TEMP + A( I, J )*X( IX )
  274. 150 CONTINUE
  275. X( JX ) = TEMP
  276. JX = JX + INCX
  277. 160 CONTINUE
  278. END IF
  279. END IF
  280. END IF
  281. *
  282. RETURN
  283. *
  284. * End of STRMV .
  285. *
  286. END