You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsyrkf.f 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. SUBROUTINE DSYRKF ( UPLO, TRANS, N, K, ALPHA, A, LDA,
  2. $ BETA, C, LDC )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 UPLO, TRANS
  5. INTEGER N, K, LDA, LDC
  6. DOUBLE PRECISION ALPHA, BETA
  7. * .. Array Arguments ..
  8. DOUBLE PRECISION A( LDA, * ), C( LDC, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * DSYRK performs one of the symmetric rank k operations
  15. *
  16. * C := alpha*A*A' + beta*C,
  17. *
  18. * or
  19. *
  20. * C := alpha*A'*A + beta*C,
  21. *
  22. * where alpha and beta are scalars, C is an n by n symmetric matrix
  23. * and A is an n by k matrix in the first case and a k by n matrix
  24. * in the second case.
  25. *
  26. * Parameters
  27. * ==========
  28. *
  29. * UPLO - CHARACTER*1.
  30. * On entry, UPLO specifies whether the upper or lower
  31. * triangular part of the array C is to be referenced as
  32. * follows:
  33. *
  34. * UPLO = 'U' or 'u' Only the upper triangular part of C
  35. * is to be referenced.
  36. *
  37. * UPLO = 'L' or 'l' Only the lower triangular part of C
  38. * is to be referenced.
  39. *
  40. * Unchanged on exit.
  41. *
  42. * TRANS - CHARACTER*1.
  43. * On entry, TRANS specifies the operation to be performed as
  44. * follows:
  45. *
  46. * TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.
  47. *
  48. * TRANS = 'T' or 't' C := alpha*A'*A + beta*C.
  49. *
  50. * TRANS = 'C' or 'c' C := alpha*A'*A + beta*C.
  51. *
  52. * Unchanged on exit.
  53. *
  54. * N - INTEGER.
  55. * On entry, N specifies the order of the matrix C. N must be
  56. * at least zero.
  57. * Unchanged on exit.
  58. *
  59. * K - INTEGER.
  60. * On entry with TRANS = 'N' or 'n', K specifies the number
  61. * of columns of the matrix A, and on entry with
  62. * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
  63. * of rows of the matrix A. K must be at least zero.
  64. * Unchanged on exit.
  65. *
  66. * ALPHA - DOUBLE PRECISION.
  67. * On entry, ALPHA specifies the scalar alpha.
  68. * Unchanged on exit.
  69. *
  70. * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
  71. * k when TRANS = 'N' or 'n', and is n otherwise.
  72. * Before entry with TRANS = 'N' or 'n', the leading n by k
  73. * part of the array A must contain the matrix A, otherwise
  74. * the leading k by n part of the array A must contain the
  75. * matrix A.
  76. * Unchanged on exit.
  77. *
  78. * LDA - INTEGER.
  79. * On entry, LDA specifies the first dimension of A as declared
  80. * in the calling (sub) program. When TRANS = 'N' or 'n'
  81. * then LDA must be at least max( 1, n ), otherwise LDA must
  82. * be at least max( 1, k ).
  83. * Unchanged on exit.
  84. *
  85. * BETA - DOUBLE PRECISION.
  86. * On entry, BETA specifies the scalar beta.
  87. * Unchanged on exit.
  88. *
  89. * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
  90. * Before entry with UPLO = 'U' or 'u', the leading n by n
  91. * upper triangular part of the array C must contain the upper
  92. * triangular part of the symmetric matrix and the strictly
  93. * lower triangular part of C is not referenced. On exit, the
  94. * upper triangular part of the array C is overwritten by the
  95. * upper triangular part of the updated matrix.
  96. * Before entry with UPLO = 'L' or 'l', the leading n by n
  97. * lower triangular part of the array C must contain the lower
  98. * triangular part of the symmetric matrix and the strictly
  99. * upper triangular part of C is not referenced. On exit, the
  100. * lower triangular part of the array C is overwritten by the
  101. * lower triangular part of the updated matrix.
  102. *
  103. * LDC - INTEGER.
  104. * On entry, LDC specifies the first dimension of C as declared
  105. * in the calling (sub) program. LDC must be at least
  106. * max( 1, n ).
  107. * Unchanged on exit.
  108. *
  109. *
  110. * Level 3 Blas routine.
  111. *
  112. * -- Written on 8-February-1989.
  113. * Jack Dongarra, Argonne National Laboratory.
  114. * Iain Duff, AERE Harwell.
  115. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  116. * Sven Hammarling, Numerical Algorithms Group Ltd.
  117. *
  118. *
  119. * .. External Functions ..
  120. LOGICAL LSAME
  121. EXTERNAL LSAME
  122. * .. External Subroutines ..
  123. EXTERNAL XERBLA
  124. * .. Intrinsic Functions ..
  125. INTRINSIC MAX
  126. * .. Local Scalars ..
  127. LOGICAL UPPER
  128. INTEGER I, INFO, J, L, NROWA
  129. DOUBLE PRECISION TEMP
  130. * .. Parameters ..
  131. DOUBLE PRECISION ONE , ZERO
  132. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  133. * ..
  134. * .. Executable Statements ..
  135. *
  136. * Test the input parameters.
  137. *
  138. IF( LSAME( TRANS, 'N' ) )THEN
  139. NROWA = N
  140. ELSE
  141. NROWA = K
  142. END IF
  143. UPPER = LSAME( UPLO, 'U' )
  144. *
  145. INFO = 0
  146. IF( ( .NOT.UPPER ).AND.
  147. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  148. INFO = 1
  149. ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
  150. $ ( .NOT.LSAME( TRANS, 'T' ) ).AND.
  151. $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN
  152. INFO = 2
  153. ELSE IF( N .LT.0 )THEN
  154. INFO = 3
  155. ELSE IF( K .LT.0 )THEN
  156. INFO = 4
  157. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  158. INFO = 7
  159. ELSE IF( LDC.LT.MAX( 1, N ) )THEN
  160. INFO = 10
  161. END IF
  162. IF( INFO.NE.0 )THEN
  163. CALL XERBLA( 'DSYRK ', INFO )
  164. RETURN
  165. END IF
  166. *
  167. * Quick return if possible.
  168. *
  169. IF( ( N.EQ.0 ).OR.
  170. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
  171. $ RETURN
  172. *
  173. * And when alpha.eq.zero.
  174. *
  175. IF( ALPHA.EQ.ZERO )THEN
  176. IF( UPPER )THEN
  177. IF( BETA.EQ.ZERO )THEN
  178. DO 20, J = 1, N
  179. DO 10, I = 1, J
  180. C( I, J ) = ZERO
  181. 10 CONTINUE
  182. 20 CONTINUE
  183. ELSE
  184. DO 40, J = 1, N
  185. DO 30, I = 1, J
  186. C( I, J ) = BETA*C( I, J )
  187. 30 CONTINUE
  188. 40 CONTINUE
  189. END IF
  190. ELSE
  191. IF( BETA.EQ.ZERO )THEN
  192. DO 60, J = 1, N
  193. DO 50, I = J, N
  194. C( I, J ) = ZERO
  195. 50 CONTINUE
  196. 60 CONTINUE
  197. ELSE
  198. DO 80, J = 1, N
  199. DO 70, I = J, N
  200. C( I, J ) = BETA*C( I, J )
  201. 70 CONTINUE
  202. 80 CONTINUE
  203. END IF
  204. END IF
  205. RETURN
  206. END IF
  207. *
  208. * Start the operations.
  209. *
  210. IF( LSAME( TRANS, 'N' ) )THEN
  211. *
  212. * Form C := alpha*A*A' + beta*C.
  213. *
  214. IF( UPPER )THEN
  215. DO 130, J = 1, N
  216. IF( BETA.EQ.ZERO )THEN
  217. DO 90, I = 1, J
  218. C( I, J ) = ZERO
  219. 90 CONTINUE
  220. ELSE IF( BETA.NE.ONE )THEN
  221. DO 100, I = 1, J
  222. C( I, J ) = BETA*C( I, J )
  223. 100 CONTINUE
  224. END IF
  225. DO 120, L = 1, K
  226. IF( A( J, L ).NE.ZERO )THEN
  227. TEMP = ALPHA*A( J, L )
  228. DO 110, I = 1, J
  229. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  230. 110 CONTINUE
  231. END IF
  232. 120 CONTINUE
  233. 130 CONTINUE
  234. ELSE
  235. DO 180, J = 1, N
  236. IF( BETA.EQ.ZERO )THEN
  237. DO 140, I = J, N
  238. C( I, J ) = ZERO
  239. 140 CONTINUE
  240. ELSE IF( BETA.NE.ONE )THEN
  241. DO 150, I = J, N
  242. C( I, J ) = BETA*C( I, J )
  243. 150 CONTINUE
  244. END IF
  245. DO 170, L = 1, K
  246. IF( A( J, L ).NE.ZERO )THEN
  247. TEMP = ALPHA*A( J, L )
  248. DO 160, I = J, N
  249. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  250. 160 CONTINUE
  251. END IF
  252. 170 CONTINUE
  253. 180 CONTINUE
  254. END IF
  255. ELSE
  256. *
  257. * Form C := alpha*A'*A + beta*C.
  258. *
  259. IF( UPPER )THEN
  260. DO 210, J = 1, N
  261. DO 200, I = 1, J
  262. TEMP = ZERO
  263. DO 190, L = 1, K
  264. TEMP = TEMP + A( L, I )*A( L, J )
  265. 190 CONTINUE
  266. IF( BETA.EQ.ZERO )THEN
  267. C( I, J ) = ALPHA*TEMP
  268. ELSE
  269. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  270. END IF
  271. 200 CONTINUE
  272. 210 CONTINUE
  273. ELSE
  274. DO 240, J = 1, N
  275. DO 230, I = J, N
  276. TEMP = ZERO
  277. DO 220, L = 1, K
  278. TEMP = TEMP + A( L, I )*A( L, J )
  279. 220 CONTINUE
  280. IF( BETA.EQ.ZERO )THEN
  281. C( I, J ) = ALPHA*TEMP
  282. ELSE
  283. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  284. END IF
  285. 230 CONTINUE
  286. 240 CONTINUE
  287. END IF
  288. END IF
  289. *
  290. RETURN
  291. *
  292. * End of DSYRK .
  293. *
  294. END