You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dorbdb3.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. *> \brief \b DORBDB3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DORBDB3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
  22. * TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION PHI(*), THETA(*)
  29. * DOUBLE PRECISION TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
  30. * $ X11(LDX11,*), X21(LDX21,*)
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *>\verbatim
  38. *>
  39. *> DORBDB3 simultaneously bidiagonalizes the blocks of a tall and skinny
  40. *> matrix X with orthonomal columns:
  41. *>
  42. *> [ B11 ]
  43. *> [ X11 ] [ P1 | ] [ 0 ]
  44. *> [-----] = [---------] [-----] Q1**T .
  45. *> [ X21 ] [ | P2 ] [ B21 ]
  46. *> [ 0 ]
  47. *>
  48. *> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P,
  49. *> Q, or M-Q. Routines DORBDB1, DORBDB2, and DORBDB4 handle cases in
  50. *> which M-P is not the minimum dimension.
  51. *>
  52. *> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
  53. *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
  54. *> Householder vectors.
  55. *>
  56. *> B11 and B12 are (M-P)-by-(M-P) bidiagonal matrices represented
  57. *> implicitly by angles THETA, PHI.
  58. *>
  59. *>\endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] M
  65. *> \verbatim
  66. *> M is INTEGER
  67. *> The number of rows X11 plus the number of rows in X21.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] P
  71. *> \verbatim
  72. *> P is INTEGER
  73. *> The number of rows in X11. 0 <= P <= M. M-P <= min(P,Q,M-Q).
  74. *> \endverbatim
  75. *>
  76. *> \param[in] Q
  77. *> \verbatim
  78. *> Q is INTEGER
  79. *> The number of columns in X11 and X21. 0 <= Q <= M.
  80. *> \endverbatim
  81. *>
  82. *> \param[in,out] X11
  83. *> \verbatim
  84. *> X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  85. *> On entry, the top block of the matrix X to be reduced. On
  86. *> exit, the columns of tril(X11) specify reflectors for P1 and
  87. *> the rows of triu(X11,1) specify reflectors for Q1.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDX11
  91. *> \verbatim
  92. *> LDX11 is INTEGER
  93. *> The leading dimension of X11. LDX11 >= P.
  94. *> \endverbatim
  95. *>
  96. *> \param[in,out] X21
  97. *> \verbatim
  98. *> X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  99. *> On entry, the bottom block of the matrix X to be reduced. On
  100. *> exit, the columns of tril(X21) specify reflectors for P2.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDX21
  104. *> \verbatim
  105. *> LDX21 is INTEGER
  106. *> The leading dimension of X21. LDX21 >= M-P.
  107. *> \endverbatim
  108. *>
  109. *> \param[out] THETA
  110. *> \verbatim
  111. *> THETA is DOUBLE PRECISION array, dimension (Q)
  112. *> The entries of the bidiagonal blocks B11, B21 are defined by
  113. *> THETA and PHI. See Further Details.
  114. *> \endverbatim
  115. *>
  116. *> \param[out] PHI
  117. *> \verbatim
  118. *> PHI is DOUBLE PRECISION array, dimension (Q-1)
  119. *> The entries of the bidiagonal blocks B11, B21 are defined by
  120. *> THETA and PHI. See Further Details.
  121. *> \endverbatim
  122. *>
  123. *> \param[out] TAUP1
  124. *> \verbatim
  125. *> TAUP1 is DOUBLE PRECISION array, dimension (P)
  126. *> The scalar factors of the elementary reflectors that define
  127. *> P1.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] TAUP2
  131. *> \verbatim
  132. *> TAUP2 is DOUBLE PRECISION array, dimension (M-P)
  133. *> The scalar factors of the elementary reflectors that define
  134. *> P2.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] TAUQ1
  138. *> \verbatim
  139. *> TAUQ1 is DOUBLE PRECISION array, dimension (Q)
  140. *> The scalar factors of the elementary reflectors that define
  141. *> Q1.
  142. *> \endverbatim
  143. *>
  144. *> \param[out] WORK
  145. *> \verbatim
  146. *> WORK is DOUBLE PRECISION array, dimension (LWORK)
  147. *> \endverbatim
  148. *>
  149. *> \param[in] LWORK
  150. *> \verbatim
  151. *> LWORK is INTEGER
  152. *> The dimension of the array WORK. LWORK >= M-Q.
  153. *>
  154. *> If LWORK = -1, then a workspace query is assumed; the routine
  155. *> only calculates the optimal size of the WORK array, returns
  156. *> this value as the first entry of the WORK array, and no error
  157. *> message related to LWORK is issued by XERBLA.
  158. *> \endverbatim
  159. *>
  160. *> \param[out] INFO
  161. *> \verbatim
  162. *> INFO is INTEGER
  163. *> = 0: successful exit.
  164. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  165. *> \endverbatim
  166. *
  167. * Authors:
  168. * ========
  169. *
  170. *> \author Univ. of Tennessee
  171. *> \author Univ. of California Berkeley
  172. *> \author Univ. of Colorado Denver
  173. *> \author NAG Ltd.
  174. *
  175. *> \ingroup doubleOTHERcomputational
  176. *
  177. *> \par Further Details:
  178. * =====================
  179. *>
  180. *> \verbatim
  181. *>
  182. *> The upper-bidiagonal blocks B11, B21 are represented implicitly by
  183. *> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
  184. *> in each bidiagonal band is a product of a sine or cosine of a THETA
  185. *> with a sine or cosine of a PHI. See [1] or DORCSD for details.
  186. *>
  187. *> P1, P2, and Q1 are represented as products of elementary reflectors.
  188. *> See DORCSD2BY1 for details on generating P1, P2, and Q1 using DORGQR
  189. *> and DORGLQ.
  190. *> \endverbatim
  191. *
  192. *> \par References:
  193. * ================
  194. *>
  195. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  196. *> Algorithms, 50(1):33-65, 2009.
  197. *>
  198. * =====================================================================
  199. SUBROUTINE DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
  200. $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
  201. *
  202. * -- LAPACK computational routine --
  203. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  204. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  205. *
  206. * .. Scalar Arguments ..
  207. INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
  208. * ..
  209. * .. Array Arguments ..
  210. DOUBLE PRECISION PHI(*), THETA(*)
  211. DOUBLE PRECISION TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
  212. $ X11(LDX11,*), X21(LDX21,*)
  213. * ..
  214. *
  215. * ====================================================================
  216. *
  217. * .. Parameters ..
  218. DOUBLE PRECISION ONE
  219. PARAMETER ( ONE = 1.0D0 )
  220. * ..
  221. * .. Local Scalars ..
  222. DOUBLE PRECISION C, S
  223. INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
  224. $ LWORKMIN, LWORKOPT
  225. LOGICAL LQUERY
  226. * ..
  227. * .. External Subroutines ..
  228. EXTERNAL DLARF, DLARFGP, DORBDB5, DROT, XERBLA
  229. * ..
  230. * .. External Functions ..
  231. DOUBLE PRECISION DNRM2
  232. EXTERNAL DNRM2
  233. * ..
  234. * .. Intrinsic Function ..
  235. INTRINSIC ATAN2, COS, MAX, SIN, SQRT
  236. * ..
  237. * .. Executable Statements ..
  238. *
  239. * Test input arguments
  240. *
  241. INFO = 0
  242. LQUERY = LWORK .EQ. -1
  243. *
  244. IF( M .LT. 0 ) THEN
  245. INFO = -1
  246. ELSE IF( 2*P .LT. M .OR. P .GT. M ) THEN
  247. INFO = -2
  248. ELSE IF( Q .LT. M-P .OR. M-Q .LT. M-P ) THEN
  249. INFO = -3
  250. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  251. INFO = -5
  252. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  253. INFO = -7
  254. END IF
  255. *
  256. * Compute workspace
  257. *
  258. IF( INFO .EQ. 0 ) THEN
  259. ILARF = 2
  260. LLARF = MAX( P, M-P-1, Q-1 )
  261. IORBDB5 = 2
  262. LORBDB5 = Q-1
  263. LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
  264. LWORKMIN = LWORKOPT
  265. WORK(1) = LWORKOPT
  266. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  267. INFO = -14
  268. END IF
  269. END IF
  270. IF( INFO .NE. 0 ) THEN
  271. CALL XERBLA( 'DORBDB3', -INFO )
  272. RETURN
  273. ELSE IF( LQUERY ) THEN
  274. RETURN
  275. END IF
  276. *
  277. * Reduce rows 1, ..., M-P of X11 and X21
  278. *
  279. DO I = 1, M-P
  280. *
  281. IF( I .GT. 1 ) THEN
  282. CALL DROT( Q-I+1, X11(I-1,I), LDX11, X21(I,I), LDX11, C, S )
  283. END IF
  284. *
  285. CALL DLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
  286. S = X21(I,I)
  287. X21(I,I) = ONE
  288. CALL DLARF( 'R', P-I+1, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
  289. $ X11(I,I), LDX11, WORK(ILARF) )
  290. CALL DLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
  291. $ X21(I+1,I), LDX21, WORK(ILARF) )
  292. C = SQRT( DNRM2( P-I+1, X11(I,I), 1 )**2
  293. $ + DNRM2( M-P-I, X21(I+1,I), 1 )**2 )
  294. THETA(I) = ATAN2( S, C )
  295. *
  296. CALL DORBDB5( P-I+1, M-P-I, Q-I, X11(I,I), 1, X21(I+1,I), 1,
  297. $ X11(I,I+1), LDX11, X21(I+1,I+1), LDX21,
  298. $ WORK(IORBDB5), LORBDB5, CHILDINFO )
  299. CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  300. IF( I .LT. M-P ) THEN
  301. CALL DLARFGP( M-P-I, X21(I+1,I), X21(I+2,I), 1, TAUP2(I) )
  302. PHI(I) = ATAN2( X21(I+1,I), X11(I,I) )
  303. C = COS( PHI(I) )
  304. S = SIN( PHI(I) )
  305. X21(I+1,I) = ONE
  306. CALL DLARF( 'L', M-P-I, Q-I, X21(I+1,I), 1, TAUP2(I),
  307. $ X21(I+1,I+1), LDX21, WORK(ILARF) )
  308. END IF
  309. X11(I,I) = ONE
  310. CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), X11(I,I+1),
  311. $ LDX11, WORK(ILARF) )
  312. *
  313. END DO
  314. *
  315. * Reduce the bottom-right portion of X11 to the identity matrix
  316. *
  317. DO I = M-P + 1, Q
  318. CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  319. X11(I,I) = ONE
  320. CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), X11(I,I+1),
  321. $ LDX11, WORK(ILARF) )
  322. END DO
  323. *
  324. RETURN
  325. *
  326. * End of DORBDB3
  327. *
  328. END