You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqps.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. *> \brief \b DLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAQPS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqps.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqps.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqps.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
  22. * VN2, AUXV, F, LDF )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER KB, LDA, LDF, M, N, NB, OFFSET
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER JPVT( * )
  29. * DOUBLE PRECISION A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
  30. * $ VN1( * ), VN2( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLAQPS computes a step of QR factorization with column pivoting
  40. *> of a real M-by-N matrix A by using Blas-3. It tries to factorize
  41. *> NB columns from A starting from the row OFFSET+1, and updates all
  42. *> of the matrix with Blas-3 xGEMM.
  43. *>
  44. *> In some cases, due to catastrophic cancellations, it cannot
  45. *> factorize NB columns. Hence, the actual number of factorized
  46. *> columns is returned in KB.
  47. *>
  48. *> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] M
  55. *> \verbatim
  56. *> M is INTEGER
  57. *> The number of rows of the matrix A. M >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The number of columns of the matrix A. N >= 0
  64. *> \endverbatim
  65. *>
  66. *> \param[in] OFFSET
  67. *> \verbatim
  68. *> OFFSET is INTEGER
  69. *> The number of rows of A that have been factorized in
  70. *> previous steps.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] NB
  74. *> \verbatim
  75. *> NB is INTEGER
  76. *> The number of columns to factorize.
  77. *> \endverbatim
  78. *>
  79. *> \param[out] KB
  80. *> \verbatim
  81. *> KB is INTEGER
  82. *> The number of columns actually factorized.
  83. *> \endverbatim
  84. *>
  85. *> \param[in,out] A
  86. *> \verbatim
  87. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  88. *> On entry, the M-by-N matrix A.
  89. *> On exit, block A(OFFSET+1:M,1:KB) is the triangular
  90. *> factor obtained and block A(1:OFFSET,1:N) has been
  91. *> accordingly pivoted, but no factorized.
  92. *> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
  93. *> been updated.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LDA
  97. *> \verbatim
  98. *> LDA is INTEGER
  99. *> The leading dimension of the array A. LDA >= max(1,M).
  100. *> \endverbatim
  101. *>
  102. *> \param[in,out] JPVT
  103. *> \verbatim
  104. *> JPVT is INTEGER array, dimension (N)
  105. *> JPVT(I) = K <==> Column K of the full matrix A has been
  106. *> permuted into position I in AP.
  107. *> \endverbatim
  108. *>
  109. *> \param[out] TAU
  110. *> \verbatim
  111. *> TAU is DOUBLE PRECISION array, dimension (KB)
  112. *> The scalar factors of the elementary reflectors.
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] VN1
  116. *> \verbatim
  117. *> VN1 is DOUBLE PRECISION array, dimension (N)
  118. *> The vector with the partial column norms.
  119. *> \endverbatim
  120. *>
  121. *> \param[in,out] VN2
  122. *> \verbatim
  123. *> VN2 is DOUBLE PRECISION array, dimension (N)
  124. *> The vector with the exact column norms.
  125. *> \endverbatim
  126. *>
  127. *> \param[in,out] AUXV
  128. *> \verbatim
  129. *> AUXV is DOUBLE PRECISION array, dimension (NB)
  130. *> Auxiliary vector.
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] F
  134. *> \verbatim
  135. *> F is DOUBLE PRECISION array, dimension (LDF,NB)
  136. *> Matrix F**T = L*Y**T*A.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] LDF
  140. *> \verbatim
  141. *> LDF is INTEGER
  142. *> The leading dimension of the array F. LDF >= max(1,N).
  143. *> \endverbatim
  144. *
  145. * Authors:
  146. * ========
  147. *
  148. *> \author Univ. of Tennessee
  149. *> \author Univ. of California Berkeley
  150. *> \author Univ. of Colorado Denver
  151. *> \author NAG Ltd.
  152. *
  153. *> \ingroup doubleOTHERauxiliary
  154. *
  155. *> \par Contributors:
  156. * ==================
  157. *>
  158. *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  159. *> X. Sun, Computer Science Dept., Duke University, USA
  160. *> \n
  161. *> Partial column norm updating strategy modified on April 2011
  162. *> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
  163. *> University of Zagreb, Croatia.
  164. *
  165. *> \par References:
  166. * ================
  167. *>
  168. *> LAPACK Working Note 176
  169. *
  170. *> \htmlonly
  171. *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
  172. *> \endhtmlonly
  173. *
  174. * =====================================================================
  175. SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
  176. $ VN2, AUXV, F, LDF )
  177. *
  178. * -- LAPACK auxiliary routine --
  179. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  180. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181. *
  182. * .. Scalar Arguments ..
  183. INTEGER KB, LDA, LDF, M, N, NB, OFFSET
  184. * ..
  185. * .. Array Arguments ..
  186. INTEGER JPVT( * )
  187. DOUBLE PRECISION A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
  188. $ VN1( * ), VN2( * )
  189. * ..
  190. *
  191. * =====================================================================
  192. *
  193. * .. Parameters ..
  194. DOUBLE PRECISION ZERO, ONE
  195. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  196. * ..
  197. * .. Local Scalars ..
  198. INTEGER ITEMP, J, K, LASTRK, LSTICC, PVT, RK
  199. DOUBLE PRECISION AKK, TEMP, TEMP2, TOL3Z
  200. * ..
  201. * .. External Subroutines ..
  202. EXTERNAL DGEMM, DGEMV, DLARFG, DSWAP
  203. * ..
  204. * .. Intrinsic Functions ..
  205. INTRINSIC ABS, DBLE, MAX, MIN, NINT, SQRT
  206. * ..
  207. * .. External Functions ..
  208. INTEGER IDAMAX
  209. DOUBLE PRECISION DLAMCH, DNRM2
  210. EXTERNAL IDAMAX, DLAMCH, DNRM2
  211. * ..
  212. * .. Executable Statements ..
  213. *
  214. LASTRK = MIN( M, N+OFFSET )
  215. LSTICC = 0
  216. K = 0
  217. TOL3Z = SQRT(DLAMCH('Epsilon'))
  218. *
  219. * Beginning of while loop.
  220. *
  221. 10 CONTINUE
  222. IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
  223. K = K + 1
  224. RK = OFFSET + K
  225. *
  226. * Determine ith pivot column and swap if necessary
  227. *
  228. PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
  229. IF( PVT.NE.K ) THEN
  230. CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
  231. CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
  232. ITEMP = JPVT( PVT )
  233. JPVT( PVT ) = JPVT( K )
  234. JPVT( K ) = ITEMP
  235. VN1( PVT ) = VN1( K )
  236. VN2( PVT ) = VN2( K )
  237. END IF
  238. *
  239. * Apply previous Householder reflectors to column K:
  240. * A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**T.
  241. *
  242. IF( K.GT.1 ) THEN
  243. CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ),
  244. $ LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
  245. END IF
  246. *
  247. * Generate elementary reflector H(k).
  248. *
  249. IF( RK.LT.M ) THEN
  250. CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
  251. ELSE
  252. CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
  253. END IF
  254. *
  255. AKK = A( RK, K )
  256. A( RK, K ) = ONE
  257. *
  258. * Compute Kth column of F:
  259. *
  260. * Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**T*A(RK:M,K).
  261. *
  262. IF( K.LT.N ) THEN
  263. CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ),
  264. $ A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO,
  265. $ F( K+1, K ), 1 )
  266. END IF
  267. *
  268. * Padding F(1:K,K) with zeros.
  269. *
  270. DO 20 J = 1, K
  271. F( J, K ) = ZERO
  272. 20 CONTINUE
  273. *
  274. * Incremental updating of F:
  275. * F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**T
  276. * *A(RK:M,K).
  277. *
  278. IF( K.GT.1 ) THEN
  279. CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ),
  280. $ LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
  281. *
  282. CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF,
  283. $ AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
  284. END IF
  285. *
  286. * Update the current row of A:
  287. * A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**T.
  288. *
  289. IF( K.LT.N ) THEN
  290. CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF,
  291. $ A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
  292. END IF
  293. *
  294. * Update partial column norms.
  295. *
  296. IF( RK.LT.LASTRK ) THEN
  297. DO 30 J = K + 1, N
  298. IF( VN1( J ).NE.ZERO ) THEN
  299. *
  300. * NOTE: The following 4 lines follow from the analysis in
  301. * Lapack Working Note 176.
  302. *
  303. TEMP = ABS( A( RK, J ) ) / VN1( J )
  304. TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
  305. TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
  306. IF( TEMP2 .LE. TOL3Z ) THEN
  307. VN2( J ) = DBLE( LSTICC )
  308. LSTICC = J
  309. ELSE
  310. VN1( J ) = VN1( J )*SQRT( TEMP )
  311. END IF
  312. END IF
  313. 30 CONTINUE
  314. END IF
  315. *
  316. A( RK, K ) = AKK
  317. *
  318. * End of while loop.
  319. *
  320. GO TO 10
  321. END IF
  322. KB = K
  323. RK = OFFSET + KB
  324. *
  325. * Apply the block reflector to the rest of the matrix:
  326. * A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
  327. * A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**T.
  328. *
  329. IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
  330. CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE,
  331. $ A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE,
  332. $ A( RK+1, KB+1 ), LDA )
  333. END IF
  334. *
  335. * Recomputation of difficult columns.
  336. *
  337. 40 CONTINUE
  338. IF( LSTICC.GT.0 ) THEN
  339. ITEMP = NINT( VN2( LSTICC ) )
  340. VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
  341. *
  342. * NOTE: The computation of VN1( LSTICC ) relies on the fact that
  343. * SNRM2 does not fail on vectors with norm below the value of
  344. * SQRT(DLAMCH('S'))
  345. *
  346. VN2( LSTICC ) = VN1( LSTICC )
  347. LSTICC = ITEMP
  348. GO TO 40
  349. END IF
  350. *
  351. RETURN
  352. *
  353. * End of DLAQPS
  354. *
  355. END