You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csteqr.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. *> \brief \b CSTEQR
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSTEQR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csteqr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csteqr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csteqr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER COMPZ
  25. * INTEGER INFO, LDZ, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL D( * ), E( * ), WORK( * )
  29. * COMPLEX Z( LDZ, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CSTEQR computes all eigenvalues and, optionally, eigenvectors of a
  39. *> symmetric tridiagonal matrix using the implicit QL or QR method.
  40. *> The eigenvectors of a full or band complex Hermitian matrix can also
  41. *> be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this
  42. *> matrix to tridiagonal form.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] COMPZ
  49. *> \verbatim
  50. *> COMPZ is CHARACTER*1
  51. *> = 'N': Compute eigenvalues only.
  52. *> = 'V': Compute eigenvalues and eigenvectors of the original
  53. *> Hermitian matrix. On entry, Z must contain the
  54. *> unitary matrix used to reduce the original matrix
  55. *> to tridiagonal form.
  56. *> = 'I': Compute eigenvalues and eigenvectors of the
  57. *> tridiagonal matrix. Z is initialized to the identity
  58. *> matrix.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] D
  68. *> \verbatim
  69. *> D is REAL array, dimension (N)
  70. *> On entry, the diagonal elements of the tridiagonal matrix.
  71. *> On exit, if INFO = 0, the eigenvalues in ascending order.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] E
  75. *> \verbatim
  76. *> E is REAL array, dimension (N-1)
  77. *> On entry, the (n-1) subdiagonal elements of the tridiagonal
  78. *> matrix.
  79. *> On exit, E has been destroyed.
  80. *> \endverbatim
  81. *>
  82. *> \param[in,out] Z
  83. *> \verbatim
  84. *> Z is COMPLEX array, dimension (LDZ, N)
  85. *> On entry, if COMPZ = 'V', then Z contains the unitary
  86. *> matrix used in the reduction to tridiagonal form.
  87. *> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
  88. *> orthonormal eigenvectors of the original Hermitian matrix,
  89. *> and if COMPZ = 'I', Z contains the orthonormal eigenvectors
  90. *> of the symmetric tridiagonal matrix.
  91. *> If COMPZ = 'N', then Z is not referenced.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDZ
  95. *> \verbatim
  96. *> LDZ is INTEGER
  97. *> The leading dimension of the array Z. LDZ >= 1, and if
  98. *> eigenvectors are desired, then LDZ >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WORK
  102. *> \verbatim
  103. *> WORK is REAL array, dimension (max(1,2*N-2))
  104. *> If COMPZ = 'N', then WORK is not referenced.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] INFO
  108. *> \verbatim
  109. *> INFO is INTEGER
  110. *> = 0: successful exit
  111. *> < 0: if INFO = -i, the i-th argument had an illegal value
  112. *> > 0: the algorithm has failed to find all the eigenvalues in
  113. *> a total of 30*N iterations; if INFO = i, then i
  114. *> elements of E have not converged to zero; on exit, D
  115. *> and E contain the elements of a symmetric tridiagonal
  116. *> matrix which is unitarily similar to the original
  117. *> matrix.
  118. *> \endverbatim
  119. *
  120. * Authors:
  121. * ========
  122. *
  123. *> \author Univ. of Tennessee
  124. *> \author Univ. of California Berkeley
  125. *> \author Univ. of Colorado Denver
  126. *> \author NAG Ltd.
  127. *
  128. *> \ingroup complexOTHERcomputational
  129. *
  130. * =====================================================================
  131. SUBROUTINE CSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  132. *
  133. * -- LAPACK computational routine --
  134. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  135. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136. *
  137. * .. Scalar Arguments ..
  138. CHARACTER COMPZ
  139. INTEGER INFO, LDZ, N
  140. * ..
  141. * .. Array Arguments ..
  142. REAL D( * ), E( * ), WORK( * )
  143. COMPLEX Z( LDZ, * )
  144. * ..
  145. *
  146. * =====================================================================
  147. *
  148. * .. Parameters ..
  149. REAL ZERO, ONE, TWO, THREE
  150. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
  151. $ THREE = 3.0E0 )
  152. COMPLEX CZERO, CONE
  153. PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
  154. $ CONE = ( 1.0E0, 0.0E0 ) )
  155. INTEGER MAXIT
  156. PARAMETER ( MAXIT = 30 )
  157. * ..
  158. * .. Local Scalars ..
  159. INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
  160. $ LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
  161. $ NM1, NMAXIT
  162. REAL ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
  163. $ S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
  164. * ..
  165. * .. External Functions ..
  166. LOGICAL LSAME
  167. REAL SLAMCH, SLANST, SLAPY2
  168. EXTERNAL LSAME, SLAMCH, SLANST, SLAPY2
  169. * ..
  170. * .. External Subroutines ..
  171. EXTERNAL CLASET, CLASR, CSWAP, SLAE2, SLAEV2, SLARTG,
  172. $ SLASCL, SLASRT, XERBLA
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC ABS, MAX, SIGN, SQRT
  176. * ..
  177. * .. Executable Statements ..
  178. *
  179. * Test the input parameters.
  180. *
  181. INFO = 0
  182. *
  183. IF( LSAME( COMPZ, 'N' ) ) THEN
  184. ICOMPZ = 0
  185. ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  186. ICOMPZ = 1
  187. ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  188. ICOMPZ = 2
  189. ELSE
  190. ICOMPZ = -1
  191. END IF
  192. IF( ICOMPZ.LT.0 ) THEN
  193. INFO = -1
  194. ELSE IF( N.LT.0 ) THEN
  195. INFO = -2
  196. ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
  197. $ N ) ) ) THEN
  198. INFO = -6
  199. END IF
  200. IF( INFO.NE.0 ) THEN
  201. CALL XERBLA( 'CSTEQR', -INFO )
  202. RETURN
  203. END IF
  204. *
  205. * Quick return if possible
  206. *
  207. IF( N.EQ.0 )
  208. $ RETURN
  209. *
  210. IF( N.EQ.1 ) THEN
  211. IF( ICOMPZ.EQ.2 )
  212. $ Z( 1, 1 ) = CONE
  213. RETURN
  214. END IF
  215. *
  216. * Determine the unit roundoff and over/underflow thresholds.
  217. *
  218. EPS = SLAMCH( 'E' )
  219. EPS2 = EPS**2
  220. SAFMIN = SLAMCH( 'S' )
  221. SAFMAX = ONE / SAFMIN
  222. SSFMAX = SQRT( SAFMAX ) / THREE
  223. SSFMIN = SQRT( SAFMIN ) / EPS2
  224. *
  225. * Compute the eigenvalues and eigenvectors of the tridiagonal
  226. * matrix.
  227. *
  228. IF( ICOMPZ.EQ.2 )
  229. $ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
  230. *
  231. NMAXIT = N*MAXIT
  232. JTOT = 0
  233. *
  234. * Determine where the matrix splits and choose QL or QR iteration
  235. * for each block, according to whether top or bottom diagonal
  236. * element is smaller.
  237. *
  238. L1 = 1
  239. NM1 = N - 1
  240. *
  241. 10 CONTINUE
  242. IF( L1.GT.N )
  243. $ GO TO 160
  244. IF( L1.GT.1 )
  245. $ E( L1-1 ) = ZERO
  246. IF( L1.LE.NM1 ) THEN
  247. DO 20 M = L1, NM1
  248. TST = ABS( E( M ) )
  249. IF( TST.EQ.ZERO )
  250. $ GO TO 30
  251. IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
  252. $ 1 ) ) ) )*EPS ) THEN
  253. E( M ) = ZERO
  254. GO TO 30
  255. END IF
  256. 20 CONTINUE
  257. END IF
  258. M = N
  259. *
  260. 30 CONTINUE
  261. L = L1
  262. LSV = L
  263. LEND = M
  264. LENDSV = LEND
  265. L1 = M + 1
  266. IF( LEND.EQ.L )
  267. $ GO TO 10
  268. *
  269. * Scale submatrix in rows and columns L to LEND
  270. *
  271. ANORM = SLANST( 'I', LEND-L+1, D( L ), E( L ) )
  272. ISCALE = 0
  273. IF( ANORM.EQ.ZERO )
  274. $ GO TO 10
  275. IF( ANORM.GT.SSFMAX ) THEN
  276. ISCALE = 1
  277. CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
  278. $ INFO )
  279. CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
  280. $ INFO )
  281. ELSE IF( ANORM.LT.SSFMIN ) THEN
  282. ISCALE = 2
  283. CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
  284. $ INFO )
  285. CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
  286. $ INFO )
  287. END IF
  288. *
  289. * Choose between QL and QR iteration
  290. *
  291. IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
  292. LEND = LSV
  293. L = LENDSV
  294. END IF
  295. *
  296. IF( LEND.GT.L ) THEN
  297. *
  298. * QL Iteration
  299. *
  300. * Look for small subdiagonal element.
  301. *
  302. 40 CONTINUE
  303. IF( L.NE.LEND ) THEN
  304. LENDM1 = LEND - 1
  305. DO 50 M = L, LENDM1
  306. TST = ABS( E( M ) )**2
  307. IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
  308. $ SAFMIN )GO TO 60
  309. 50 CONTINUE
  310. END IF
  311. *
  312. M = LEND
  313. *
  314. 60 CONTINUE
  315. IF( M.LT.LEND )
  316. $ E( M ) = ZERO
  317. P = D( L )
  318. IF( M.EQ.L )
  319. $ GO TO 80
  320. *
  321. * If remaining matrix is 2-by-2, use SLAE2 or SLAEV2
  322. * to compute its eigensystem.
  323. *
  324. IF( M.EQ.L+1 ) THEN
  325. IF( ICOMPZ.GT.0 ) THEN
  326. CALL SLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
  327. WORK( L ) = C
  328. WORK( N-1+L ) = S
  329. CALL CLASR( 'R', 'V', 'B', N, 2, WORK( L ),
  330. $ WORK( N-1+L ), Z( 1, L ), LDZ )
  331. ELSE
  332. CALL SLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
  333. END IF
  334. D( L ) = RT1
  335. D( L+1 ) = RT2
  336. E( L ) = ZERO
  337. L = L + 2
  338. IF( L.LE.LEND )
  339. $ GO TO 40
  340. GO TO 140
  341. END IF
  342. *
  343. IF( JTOT.EQ.NMAXIT )
  344. $ GO TO 140
  345. JTOT = JTOT + 1
  346. *
  347. * Form shift.
  348. *
  349. G = ( D( L+1 )-P ) / ( TWO*E( L ) )
  350. R = SLAPY2( G, ONE )
  351. G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
  352. *
  353. S = ONE
  354. C = ONE
  355. P = ZERO
  356. *
  357. * Inner loop
  358. *
  359. MM1 = M - 1
  360. DO 70 I = MM1, L, -1
  361. F = S*E( I )
  362. B = C*E( I )
  363. CALL SLARTG( G, F, C, S, R )
  364. IF( I.NE.M-1 )
  365. $ E( I+1 ) = R
  366. G = D( I+1 ) - P
  367. R = ( D( I )-G )*S + TWO*C*B
  368. P = S*R
  369. D( I+1 ) = G + P
  370. G = C*R - B
  371. *
  372. * If eigenvectors are desired, then save rotations.
  373. *
  374. IF( ICOMPZ.GT.0 ) THEN
  375. WORK( I ) = C
  376. WORK( N-1+I ) = -S
  377. END IF
  378. *
  379. 70 CONTINUE
  380. *
  381. * If eigenvectors are desired, then apply saved rotations.
  382. *
  383. IF( ICOMPZ.GT.0 ) THEN
  384. MM = M - L + 1
  385. CALL CLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
  386. $ Z( 1, L ), LDZ )
  387. END IF
  388. *
  389. D( L ) = D( L ) - P
  390. E( L ) = G
  391. GO TO 40
  392. *
  393. * Eigenvalue found.
  394. *
  395. 80 CONTINUE
  396. D( L ) = P
  397. *
  398. L = L + 1
  399. IF( L.LE.LEND )
  400. $ GO TO 40
  401. GO TO 140
  402. *
  403. ELSE
  404. *
  405. * QR Iteration
  406. *
  407. * Look for small superdiagonal element.
  408. *
  409. 90 CONTINUE
  410. IF( L.NE.LEND ) THEN
  411. LENDP1 = LEND + 1
  412. DO 100 M = L, LENDP1, -1
  413. TST = ABS( E( M-1 ) )**2
  414. IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
  415. $ SAFMIN )GO TO 110
  416. 100 CONTINUE
  417. END IF
  418. *
  419. M = LEND
  420. *
  421. 110 CONTINUE
  422. IF( M.GT.LEND )
  423. $ E( M-1 ) = ZERO
  424. P = D( L )
  425. IF( M.EQ.L )
  426. $ GO TO 130
  427. *
  428. * If remaining matrix is 2-by-2, use SLAE2 or SLAEV2
  429. * to compute its eigensystem.
  430. *
  431. IF( M.EQ.L-1 ) THEN
  432. IF( ICOMPZ.GT.0 ) THEN
  433. CALL SLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
  434. WORK( M ) = C
  435. WORK( N-1+M ) = S
  436. CALL CLASR( 'R', 'V', 'F', N, 2, WORK( M ),
  437. $ WORK( N-1+M ), Z( 1, L-1 ), LDZ )
  438. ELSE
  439. CALL SLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
  440. END IF
  441. D( L-1 ) = RT1
  442. D( L ) = RT2
  443. E( L-1 ) = ZERO
  444. L = L - 2
  445. IF( L.GE.LEND )
  446. $ GO TO 90
  447. GO TO 140
  448. END IF
  449. *
  450. IF( JTOT.EQ.NMAXIT )
  451. $ GO TO 140
  452. JTOT = JTOT + 1
  453. *
  454. * Form shift.
  455. *
  456. G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
  457. R = SLAPY2( G, ONE )
  458. G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
  459. *
  460. S = ONE
  461. C = ONE
  462. P = ZERO
  463. *
  464. * Inner loop
  465. *
  466. LM1 = L - 1
  467. DO 120 I = M, LM1
  468. F = S*E( I )
  469. B = C*E( I )
  470. CALL SLARTG( G, F, C, S, R )
  471. IF( I.NE.M )
  472. $ E( I-1 ) = R
  473. G = D( I ) - P
  474. R = ( D( I+1 )-G )*S + TWO*C*B
  475. P = S*R
  476. D( I ) = G + P
  477. G = C*R - B
  478. *
  479. * If eigenvectors are desired, then save rotations.
  480. *
  481. IF( ICOMPZ.GT.0 ) THEN
  482. WORK( I ) = C
  483. WORK( N-1+I ) = S
  484. END IF
  485. *
  486. 120 CONTINUE
  487. *
  488. * If eigenvectors are desired, then apply saved rotations.
  489. *
  490. IF( ICOMPZ.GT.0 ) THEN
  491. MM = L - M + 1
  492. CALL CLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
  493. $ Z( 1, M ), LDZ )
  494. END IF
  495. *
  496. D( L ) = D( L ) - P
  497. E( LM1 ) = G
  498. GO TO 90
  499. *
  500. * Eigenvalue found.
  501. *
  502. 130 CONTINUE
  503. D( L ) = P
  504. *
  505. L = L - 1
  506. IF( L.GE.LEND )
  507. $ GO TO 90
  508. GO TO 140
  509. *
  510. END IF
  511. *
  512. * Undo scaling if necessary
  513. *
  514. 140 CONTINUE
  515. IF( ISCALE.EQ.1 ) THEN
  516. CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
  517. $ D( LSV ), N, INFO )
  518. CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
  519. $ N, INFO )
  520. ELSE IF( ISCALE.EQ.2 ) THEN
  521. CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
  522. $ D( LSV ), N, INFO )
  523. CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
  524. $ N, INFO )
  525. END IF
  526. *
  527. * Check for no convergence to an eigenvalue after a total
  528. * of N*MAXIT iterations.
  529. *
  530. IF( JTOT.EQ.NMAXIT ) THEN
  531. DO 150 I = 1, N - 1
  532. IF( E( I ).NE.ZERO )
  533. $ INFO = INFO + 1
  534. 150 CONTINUE
  535. RETURN
  536. END IF
  537. GO TO 10
  538. *
  539. * Order eigenvalues and eigenvectors.
  540. *
  541. 160 CONTINUE
  542. IF( ICOMPZ.EQ.0 ) THEN
  543. *
  544. * Use Quick Sort
  545. *
  546. CALL SLASRT( 'I', N, D, INFO )
  547. *
  548. ELSE
  549. *
  550. * Use Selection Sort to minimize swaps of eigenvectors
  551. *
  552. DO 180 II = 2, N
  553. I = II - 1
  554. K = I
  555. P = D( I )
  556. DO 170 J = II, N
  557. IF( D( J ).LT.P ) THEN
  558. K = J
  559. P = D( J )
  560. END IF
  561. 170 CONTINUE
  562. IF( K.NE.I ) THEN
  563. D( K ) = D( I )
  564. D( I ) = P
  565. CALL CSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
  566. END IF
  567. 180 CONTINUE
  568. END IF
  569. RETURN
  570. *
  571. * End of CSTEQR
  572. *
  573. END