You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlaev2.f 4.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. *> \brief \b ZLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLAEV2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaev2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaev2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaev2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
  22. *
  23. * .. Scalar Arguments ..
  24. * DOUBLE PRECISION CS1, RT1, RT2
  25. * COMPLEX*16 A, B, C, SN1
  26. * ..
  27. *
  28. *
  29. *> \par Purpose:
  30. * =============
  31. *>
  32. *> \verbatim
  33. *>
  34. *> ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
  35. *> [ A B ]
  36. *> [ CONJG(B) C ].
  37. *> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
  38. *> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
  39. *> eigenvector for RT1, giving the decomposition
  40. *>
  41. *> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
  42. *> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] A
  49. *> \verbatim
  50. *> A is COMPLEX*16
  51. *> The (1,1) element of the 2-by-2 matrix.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] B
  55. *> \verbatim
  56. *> B is COMPLEX*16
  57. *> The (1,2) element and the conjugate of the (2,1) element of
  58. *> the 2-by-2 matrix.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] C
  62. *> \verbatim
  63. *> C is COMPLEX*16
  64. *> The (2,2) element of the 2-by-2 matrix.
  65. *> \endverbatim
  66. *>
  67. *> \param[out] RT1
  68. *> \verbatim
  69. *> RT1 is DOUBLE PRECISION
  70. *> The eigenvalue of larger absolute value.
  71. *> \endverbatim
  72. *>
  73. *> \param[out] RT2
  74. *> \verbatim
  75. *> RT2 is DOUBLE PRECISION
  76. *> The eigenvalue of smaller absolute value.
  77. *> \endverbatim
  78. *>
  79. *> \param[out] CS1
  80. *> \verbatim
  81. *> CS1 is DOUBLE PRECISION
  82. *> \endverbatim
  83. *>
  84. *> \param[out] SN1
  85. *> \verbatim
  86. *> SN1 is COMPLEX*16
  87. *> The vector (CS1, SN1) is a unit right eigenvector for RT1.
  88. *> \endverbatim
  89. *
  90. * Authors:
  91. * ========
  92. *
  93. *> \author Univ. of Tennessee
  94. *> \author Univ. of California Berkeley
  95. *> \author Univ. of Colorado Denver
  96. *> \author NAG Ltd.
  97. *
  98. *> \date December 2016
  99. *
  100. *> \ingroup complex16OTHERauxiliary
  101. *
  102. *> \par Further Details:
  103. * =====================
  104. *>
  105. *> \verbatim
  106. *>
  107. *> RT1 is accurate to a few ulps barring over/underflow.
  108. *>
  109. *> RT2 may be inaccurate if there is massive cancellation in the
  110. *> determinant A*C-B*B; higher precision or correctly rounded or
  111. *> correctly truncated arithmetic would be needed to compute RT2
  112. *> accurately in all cases.
  113. *>
  114. *> CS1 and SN1 are accurate to a few ulps barring over/underflow.
  115. *>
  116. *> Overflow is possible only if RT1 is within a factor of 5 of overflow.
  117. *> Underflow is harmless if the input data is 0 or exceeds
  118. *> underflow_threshold / macheps.
  119. *> \endverbatim
  120. *>
  121. * =====================================================================
  122. SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
  123. *
  124. * -- LAPACK auxiliary routine (version 3.7.0) --
  125. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  126. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  127. * December 2016
  128. *
  129. * .. Scalar Arguments ..
  130. DOUBLE PRECISION CS1, RT1, RT2
  131. COMPLEX*16 A, B, C, SN1
  132. * ..
  133. *
  134. * =====================================================================
  135. *
  136. * .. Parameters ..
  137. DOUBLE PRECISION ZERO
  138. PARAMETER ( ZERO = 0.0D0 )
  139. DOUBLE PRECISION ONE
  140. PARAMETER ( ONE = 1.0D0 )
  141. * ..
  142. * .. Local Scalars ..
  143. DOUBLE PRECISION T
  144. COMPLEX*16 W
  145. * ..
  146. * .. External Subroutines ..
  147. EXTERNAL DLAEV2
  148. * ..
  149. * .. Intrinsic Functions ..
  150. INTRINSIC ABS, DBLE, DCONJG
  151. * ..
  152. * .. Executable Statements ..
  153. *
  154. IF( ABS( B ).EQ.ZERO ) THEN
  155. W = ONE
  156. ELSE
  157. W = DCONJG( B ) / ABS( B )
  158. END IF
  159. CALL DLAEV2( DBLE( A ), ABS( B ), DBLE( C ), RT1, RT2, CS1, T )
  160. SN1 = W*T
  161. RETURN
  162. *
  163. * End of ZLAEV2
  164. *
  165. END