You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgetsls.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. *> \brief \b ZGETSLS
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  7. * $ WORK, LWORK, INFO )
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER TRANS
  11. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  12. * ..
  13. * .. Array Arguments ..
  14. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  15. * ..
  16. *
  17. *
  18. *> \par Purpose:
  19. * =============
  20. *>
  21. *> \verbatim
  22. *>
  23. *> ZGETSLS solves overdetermined or underdetermined complex linear systems
  24. *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
  25. *> factorization of A. It is assumed that A has full rank.
  26. *>
  27. *>
  28. *>
  29. *> The following options are provided:
  30. *>
  31. *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
  32. *> an overdetermined system, i.e., solve the least squares problem
  33. *> minimize || B - A*X ||.
  34. *>
  35. *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
  36. *> an underdetermined system A * X = B.
  37. *>
  38. *> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
  39. *> an undetermined system A**T * X = B.
  40. *>
  41. *> 4. If TRANS = 'C' and m < n: find the least squares solution of
  42. *> an overdetermined system, i.e., solve the least squares problem
  43. *> minimize || B - A**T * X ||.
  44. *>
  45. *> Several right hand side vectors b and solution vectors x can be
  46. *> handled in a single call; they are stored as the columns of the
  47. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  48. *> matrix X.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] TRANS
  55. *> \verbatim
  56. *> TRANS is CHARACTER*1
  57. *> = 'N': the linear system involves A;
  58. *> = 'C': the linear system involves A**H.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] M
  62. *> \verbatim
  63. *> M is INTEGER
  64. *> The number of rows of the matrix A. M >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The number of columns of the matrix A. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] NRHS
  74. *> \verbatim
  75. *> NRHS is INTEGER
  76. *> The number of right hand sides, i.e., the number of
  77. *> columns of the matrices B and X. NRHS >=0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] A
  81. *> \verbatim
  82. *> A is COMPLEX*16 array, dimension (LDA,N)
  83. *> On entry, the M-by-N matrix A.
  84. *> On exit,
  85. *> A is overwritten by details of its QR or LQ
  86. *> factorization as returned by ZGEQR or ZGELQ.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,M).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  98. *> On entry, the matrix B of right hand side vectors, stored
  99. *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  100. *> if TRANS = 'C'.
  101. *> On exit, if INFO = 0, B is overwritten by the solution
  102. *> vectors, stored columnwise:
  103. *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  104. *> squares solution vectors.
  105. *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
  106. *> minimum norm solution vectors;
  107. *> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  108. *> minimum norm solution vectors;
  109. *> if TRANS = 'C' and m < n, rows 1 to M of B contain the
  110. *> least squares solution vectors.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDB
  114. *> \verbatim
  115. *> LDB is INTEGER
  116. *> The leading dimension of the array B. LDB >= MAX(1,M,N).
  117. *> \endverbatim
  118. *>
  119. *> \param[out] WORK
  120. *> \verbatim
  121. *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  122. *> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  123. *> or optimal, if query was assumed) LWORK.
  124. *> See LWORK for details.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LWORK
  128. *> \verbatim
  129. *> LWORK is INTEGER
  130. *> The dimension of the array WORK.
  131. *> If LWORK = -1 or -2, then a workspace query is assumed.
  132. *> If LWORK = -1, the routine calculates optimal size of WORK for the
  133. *> optimal performance and returns this value in WORK(1).
  134. *> If LWORK = -2, the routine calculates minimal size of WORK and
  135. *> returns this value in WORK(1).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] INFO
  139. *> \verbatim
  140. *> INFO is INTEGER
  141. *> = 0: successful exit
  142. *> < 0: if INFO = -i, the i-th argument had an illegal value
  143. *> > 0: if INFO = i, the i-th diagonal element of the
  144. *> triangular factor of A is zero, so that A does not have
  145. *> full rank; the least squares solution could not be
  146. *> computed.
  147. *> \endverbatim
  148. *
  149. * Authors:
  150. * ========
  151. *
  152. *> \author Univ. of Tennessee
  153. *> \author Univ. of California Berkeley
  154. *> \author Univ. of Colorado Denver
  155. *> \author NAG Ltd.
  156. *
  157. *> \date June 2017
  158. *
  159. *> \ingroup complex16GEsolve
  160. *
  161. * =====================================================================
  162. SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  163. $ WORK, LWORK, INFO )
  164. *
  165. * -- LAPACK driver routine (version 3.7.1) --
  166. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  167. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  168. * June 2017
  169. *
  170. * .. Scalar Arguments ..
  171. CHARACTER TRANS
  172. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  173. * ..
  174. * .. Array Arguments ..
  175. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  176. *
  177. * ..
  178. *
  179. * =====================================================================
  180. *
  181. * .. Parameters ..
  182. DOUBLE PRECISION ZERO, ONE
  183. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  184. COMPLEX*16 CZERO
  185. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  186. * ..
  187. * .. Local Scalars ..
  188. LOGICAL LQUERY, TRAN
  189. INTEGER I, IASCL, IBSCL, J, MINMN, MAXMN, BROW,
  190. $ SCLLEN, MNK, TSZO, TSZM, LWO, LWM, LW1, LW2,
  191. $ WSIZEO, WSIZEM, INFO2
  192. DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM, DUM( 1 )
  193. COMPLEX*16 TQ( 5 ), WORKQ( 1 )
  194. * ..
  195. * .. External Functions ..
  196. LOGICAL LSAME
  197. INTEGER ILAENV
  198. DOUBLE PRECISION DLAMCH, ZLANGE
  199. EXTERNAL LSAME, ILAENV, DLABAD, DLAMCH, ZLANGE
  200. * ..
  201. * .. External Subroutines ..
  202. EXTERNAL ZGEQR, ZGEMQR, ZLASCL, ZLASET,
  203. $ ZTRTRS, XERBLA, ZGELQ, ZGEMLQ
  204. * ..
  205. * .. Intrinsic Functions ..
  206. INTRINSIC DBLE, MAX, MIN, INT
  207. * ..
  208. * .. Executable Statements ..
  209. *
  210. * Test the input arguments.
  211. *
  212. INFO = 0
  213. MINMN = MIN( M, N )
  214. MAXMN = MAX( M, N )
  215. MNK = MAX( MINMN, NRHS )
  216. TRAN = LSAME( TRANS, 'C' )
  217. *
  218. LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  219. IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  220. $ LSAME( TRANS, 'C' ) ) ) THEN
  221. INFO = -1
  222. ELSE IF( M.LT.0 ) THEN
  223. INFO = -2
  224. ELSE IF( N.LT.0 ) THEN
  225. INFO = -3
  226. ELSE IF( NRHS.LT.0 ) THEN
  227. INFO = -4
  228. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  229. INFO = -6
  230. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  231. INFO = -8
  232. END IF
  233. *
  234. IF( INFO.EQ.0 ) THEN
  235. *
  236. * Determine the block size and minimum LWORK
  237. *
  238. IF( M.GE.N ) THEN
  239. CALL ZGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  240. TSZO = INT( TQ( 1 ) )
  241. LWO = INT( WORKQ( 1 ) )
  242. CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  243. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  244. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  245. CALL ZGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  246. TSZM = INT( TQ( 1 ) )
  247. LWM = INT( WORKQ( 1 ) )
  248. CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  249. $ TSZM, B, LDB, WORKQ, -1, INFO2 )
  250. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  251. WSIZEO = TSZO + LWO
  252. WSIZEM = TSZM + LWM
  253. ELSE
  254. CALL ZGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  255. TSZO = INT( TQ( 1 ) )
  256. LWO = INT( WORKQ( 1 ) )
  257. CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  258. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  259. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  260. CALL ZGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  261. TSZM = INT( TQ( 1 ) )
  262. LWM = INT( WORKQ( 1 ) )
  263. CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  264. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  265. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  266. WSIZEO = TSZO + LWO
  267. WSIZEM = TSZM + LWM
  268. END IF
  269. *
  270. IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  271. INFO = -10
  272. END IF
  273. *
  274. END IF
  275. *
  276. IF( INFO.NE.0 ) THEN
  277. CALL XERBLA( 'ZGETSLS', -INFO )
  278. WORK( 1 ) = DBLE( WSIZEO )
  279. RETURN
  280. END IF
  281. IF( LQUERY ) THEN
  282. IF( LWORK.EQ.-1 ) WORK( 1 ) = REAL( WSIZEO )
  283. IF( LWORK.EQ.-2 ) WORK( 1 ) = REAL( WSIZEM )
  284. RETURN
  285. END IF
  286. IF( LWORK.LT.WSIZEO ) THEN
  287. LW1 = TSZM
  288. LW2 = LWM
  289. ELSE
  290. LW1 = TSZO
  291. LW2 = LWO
  292. END IF
  293. *
  294. * Quick return if possible
  295. *
  296. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  297. CALL ZLASET( 'FULL', MAX( M, N ), NRHS, CZERO, CZERO,
  298. $ B, LDB )
  299. RETURN
  300. END IF
  301. *
  302. * Get machine parameters
  303. *
  304. SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  305. BIGNUM = ONE / SMLNUM
  306. CALL DLABAD( SMLNUM, BIGNUM )
  307. *
  308. * Scale A, B if max element outside range [SMLNUM,BIGNUM]
  309. *
  310. ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
  311. IASCL = 0
  312. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  313. *
  314. * Scale matrix norm up to SMLNUM
  315. *
  316. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  317. IASCL = 1
  318. ELSE IF( ANRM.GT.BIGNUM ) THEN
  319. *
  320. * Scale matrix norm down to BIGNUM
  321. *
  322. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  323. IASCL = 2
  324. ELSE IF( ANRM.EQ.ZERO ) THEN
  325. *
  326. * Matrix all zero. Return zero solution.
  327. *
  328. CALL ZLASET( 'F', MAXMN, NRHS, CZERO, CZERO, B, LDB )
  329. GO TO 50
  330. END IF
  331. *
  332. BROW = M
  333. IF ( TRAN ) THEN
  334. BROW = N
  335. END IF
  336. BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, DUM )
  337. IBSCL = 0
  338. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  339. *
  340. * Scale matrix norm up to SMLNUM
  341. *
  342. CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  343. $ INFO )
  344. IBSCL = 1
  345. ELSE IF( BNRM.GT.BIGNUM ) THEN
  346. *
  347. * Scale matrix norm down to BIGNUM
  348. *
  349. CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  350. $ INFO )
  351. IBSCL = 2
  352. END IF
  353. *
  354. IF ( M.GE.N ) THEN
  355. *
  356. * compute QR factorization of A
  357. *
  358. CALL ZGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  359. $ WORK( 1 ), LW2, INFO )
  360. IF ( .NOT.TRAN ) THEN
  361. *
  362. * Least-Squares Problem min || A * X - B ||
  363. *
  364. * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  365. *
  366. CALL ZGEMQR( 'L' , 'C', M, NRHS, N, A, LDA,
  367. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  368. $ INFO )
  369. *
  370. * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  371. *
  372. CALL ZTRTRS( 'U', 'N', 'N', N, NRHS,
  373. $ A, LDA, B, LDB, INFO )
  374. IF( INFO.GT.0 ) THEN
  375. RETURN
  376. END IF
  377. SCLLEN = N
  378. ELSE
  379. *
  380. * Overdetermined system of equations A**T * X = B
  381. *
  382. * B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  383. *
  384. CALL ZTRTRS( 'U', 'C', 'N', N, NRHS,
  385. $ A, LDA, B, LDB, INFO )
  386. *
  387. IF( INFO.GT.0 ) THEN
  388. RETURN
  389. END IF
  390. *
  391. * B(N+1:M,1:NRHS) = CZERO
  392. *
  393. DO 20 J = 1, NRHS
  394. DO 10 I = N + 1, M
  395. B( I, J ) = CZERO
  396. 10 CONTINUE
  397. 20 CONTINUE
  398. *
  399. * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  400. *
  401. CALL ZGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  402. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  403. $ INFO )
  404. *
  405. SCLLEN = M
  406. *
  407. END IF
  408. *
  409. ELSE
  410. *
  411. * Compute LQ factorization of A
  412. *
  413. CALL ZGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  414. $ WORK( 1 ), LW2, INFO )
  415. *
  416. * workspace at least M, optimally M*NB.
  417. *
  418. IF( .NOT.TRAN ) THEN
  419. *
  420. * underdetermined system of equations A * X = B
  421. *
  422. * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  423. *
  424. CALL ZTRTRS( 'L', 'N', 'N', M, NRHS,
  425. $ A, LDA, B, LDB, INFO )
  426. *
  427. IF( INFO.GT.0 ) THEN
  428. RETURN
  429. END IF
  430. *
  431. * B(M+1:N,1:NRHS) = 0
  432. *
  433. DO 40 J = 1, NRHS
  434. DO 30 I = M + 1, N
  435. B( I, J ) = CZERO
  436. 30 CONTINUE
  437. 40 CONTINUE
  438. *
  439. * B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  440. *
  441. CALL ZGEMLQ( 'L', 'C', N, NRHS, M, A, LDA,
  442. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  443. $ INFO )
  444. *
  445. * workspace at least NRHS, optimally NRHS*NB
  446. *
  447. SCLLEN = N
  448. *
  449. ELSE
  450. *
  451. * overdetermined system min || A**T * X - B ||
  452. *
  453. * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  454. *
  455. CALL ZGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  456. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  457. $ INFO )
  458. *
  459. * workspace at least NRHS, optimally NRHS*NB
  460. *
  461. * B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  462. *
  463. CALL ZTRTRS( 'L', 'C', 'N', M, NRHS,
  464. $ A, LDA, B, LDB, INFO )
  465. *
  466. IF( INFO.GT.0 ) THEN
  467. RETURN
  468. END IF
  469. *
  470. SCLLEN = M
  471. *
  472. END IF
  473. *
  474. END IF
  475. *
  476. * Undo scaling
  477. *
  478. IF( IASCL.EQ.1 ) THEN
  479. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  480. $ INFO )
  481. ELSE IF( IASCL.EQ.2 ) THEN
  482. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  483. $ INFO )
  484. END IF
  485. IF( IBSCL.EQ.1 ) THEN
  486. CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  487. $ INFO )
  488. ELSE IF( IBSCL.EQ.2 ) THEN
  489. CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  490. $ INFO )
  491. END IF
  492. *
  493. 50 CONTINUE
  494. WORK( 1 ) = DBLE( TSZO + LWO )
  495. RETURN
  496. *
  497. * End of ZGETSLS
  498. *
  499. END