You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssygvx.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. *> \brief \b SSYGVX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYGVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
  22. * VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
  23. * LWORK, IWORK, IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
  28. * REAL ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
  33. * $ Z( LDZ, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> SSYGVX computes selected eigenvalues, and optionally, eigenvectors
  43. *> of a real generalized symmetric-definite eigenproblem, of the form
  44. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
  45. *> and B are assumed to be symmetric and B is also positive definite.
  46. *> Eigenvalues and eigenvectors can be selected by specifying either a
  47. *> range of values or a range of indices for the desired eigenvalues.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] ITYPE
  54. *> \verbatim
  55. *> ITYPE is INTEGER
  56. *> Specifies the problem type to be solved:
  57. *> = 1: A*x = (lambda)*B*x
  58. *> = 2: A*B*x = (lambda)*x
  59. *> = 3: B*A*x = (lambda)*x
  60. *> \endverbatim
  61. *>
  62. *> \param[in] JOBZ
  63. *> \verbatim
  64. *> JOBZ is CHARACTER*1
  65. *> = 'N': Compute eigenvalues only;
  66. *> = 'V': Compute eigenvalues and eigenvectors.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] RANGE
  70. *> \verbatim
  71. *> RANGE is CHARACTER*1
  72. *> = 'A': all eigenvalues will be found.
  73. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  74. *> will be found.
  75. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] UPLO
  79. *> \verbatim
  80. *> UPLO is CHARACTER*1
  81. *> = 'U': Upper triangle of A and B are stored;
  82. *> = 'L': Lower triangle of A and B are stored.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] N
  86. *> \verbatim
  87. *> N is INTEGER
  88. *> The order of the matrix pencil (A,B). N >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] A
  92. *> \verbatim
  93. *> A is REAL array, dimension (LDA, N)
  94. *> On entry, the symmetric matrix A. If UPLO = 'U', the
  95. *> leading N-by-N upper triangular part of A contains the
  96. *> upper triangular part of the matrix A. If UPLO = 'L',
  97. *> the leading N-by-N lower triangular part of A contains
  98. *> the lower triangular part of the matrix A.
  99. *>
  100. *> On exit, the lower triangle (if UPLO='L') or the upper
  101. *> triangle (if UPLO='U') of A, including the diagonal, is
  102. *> destroyed.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDA
  106. *> \verbatim
  107. *> LDA is INTEGER
  108. *> The leading dimension of the array A. LDA >= max(1,N).
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] B
  112. *> \verbatim
  113. *> B is REAL array, dimension (LDB, N)
  114. *> On entry, the symmetric matrix B. If UPLO = 'U', the
  115. *> leading N-by-N upper triangular part of B contains the
  116. *> upper triangular part of the matrix B. If UPLO = 'L',
  117. *> the leading N-by-N lower triangular part of B contains
  118. *> the lower triangular part of the matrix B.
  119. *>
  120. *> On exit, if INFO <= N, the part of B containing the matrix is
  121. *> overwritten by the triangular factor U or L from the Cholesky
  122. *> factorization B = U**T*U or B = L*L**T.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDB
  126. *> \verbatim
  127. *> LDB is INTEGER
  128. *> The leading dimension of the array B. LDB >= max(1,N).
  129. *> \endverbatim
  130. *>
  131. *> \param[in] VL
  132. *> \verbatim
  133. *> VL is REAL
  134. *> If RANGE='V', the lower bound of the interval to
  135. *> be searched for eigenvalues. VL < VU.
  136. *> Not referenced if RANGE = 'A' or 'I'.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] VU
  140. *> \verbatim
  141. *> VU is REAL
  142. *> If RANGE='V', the upper bound of the interval to
  143. *> be searched for eigenvalues. VL < VU.
  144. *> Not referenced if RANGE = 'A' or 'I'.
  145. *> \endverbatim
  146. *>
  147. *> \param[in] IL
  148. *> \verbatim
  149. *> IL is INTEGER
  150. *> If RANGE='I', the index of the
  151. *> smallest eigenvalue to be returned.
  152. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  153. *> Not referenced if RANGE = 'A' or 'V'.
  154. *> \endverbatim
  155. *>
  156. *> \param[in] IU
  157. *> \verbatim
  158. *> IU is INTEGER
  159. *> If RANGE='I', the index of the
  160. *> largest eigenvalue to be returned.
  161. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  162. *> Not referenced if RANGE = 'A' or 'V'.
  163. *> \endverbatim
  164. *>
  165. *> \param[in] ABSTOL
  166. *> \verbatim
  167. *> ABSTOL is REAL
  168. *> The absolute error tolerance for the eigenvalues.
  169. *> An approximate eigenvalue is accepted as converged
  170. *> when it is determined to lie in an interval [a,b]
  171. *> of width less than or equal to
  172. *>
  173. *> ABSTOL + EPS * max( |a|,|b| ) ,
  174. *>
  175. *> where EPS is the machine precision. If ABSTOL is less than
  176. *> or equal to zero, then EPS*|T| will be used in its place,
  177. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  178. *> by reducing C to tridiagonal form, where C is the symmetric
  179. *> matrix of the standard symmetric problem to which the
  180. *> generalized problem is transformed.
  181. *>
  182. *> Eigenvalues will be computed most accurately when ABSTOL is
  183. *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  184. *> If this routine returns with INFO>0, indicating that some
  185. *> eigenvectors did not converge, try setting ABSTOL to
  186. *> 2*SLAMCH('S').
  187. *> \endverbatim
  188. *>
  189. *> \param[out] M
  190. *> \verbatim
  191. *> M is INTEGER
  192. *> The total number of eigenvalues found. 0 <= M <= N.
  193. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  194. *> \endverbatim
  195. *>
  196. *> \param[out] W
  197. *> \verbatim
  198. *> W is REAL array, dimension (N)
  199. *> On normal exit, the first M elements contain the selected
  200. *> eigenvalues in ascending order.
  201. *> \endverbatim
  202. *>
  203. *> \param[out] Z
  204. *> \verbatim
  205. *> Z is REAL array, dimension (LDZ, max(1,M))
  206. *> If JOBZ = 'N', then Z is not referenced.
  207. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  208. *> contain the orthonormal eigenvectors of the matrix A
  209. *> corresponding to the selected eigenvalues, with the i-th
  210. *> column of Z holding the eigenvector associated with W(i).
  211. *> The eigenvectors are normalized as follows:
  212. *> if ITYPE = 1 or 2, Z**T*B*Z = I;
  213. *> if ITYPE = 3, Z**T*inv(B)*Z = I.
  214. *>
  215. *> If an eigenvector fails to converge, then that column of Z
  216. *> contains the latest approximation to the eigenvector, and the
  217. *> index of the eigenvector is returned in IFAIL.
  218. *> Note: the user must ensure that at least max(1,M) columns are
  219. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  220. *> is not known in advance and an upper bound must be used.
  221. *> \endverbatim
  222. *>
  223. *> \param[in] LDZ
  224. *> \verbatim
  225. *> LDZ is INTEGER
  226. *> The leading dimension of the array Z. LDZ >= 1, and if
  227. *> JOBZ = 'V', LDZ >= max(1,N).
  228. *> \endverbatim
  229. *>
  230. *> \param[out] WORK
  231. *> \verbatim
  232. *> WORK is REAL array, dimension (MAX(1,LWORK))
  233. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  234. *> \endverbatim
  235. *>
  236. *> \param[in] LWORK
  237. *> \verbatim
  238. *> LWORK is INTEGER
  239. *> The length of the array WORK. LWORK >= max(1,8*N).
  240. *> For optimal efficiency, LWORK >= (NB+3)*N,
  241. *> where NB is the blocksize for SSYTRD returned by ILAENV.
  242. *>
  243. *> If LWORK = -1, then a workspace query is assumed; the routine
  244. *> only calculates the optimal size of the WORK array, returns
  245. *> this value as the first entry of the WORK array, and no error
  246. *> message related to LWORK is issued by XERBLA.
  247. *> \endverbatim
  248. *>
  249. *> \param[out] IWORK
  250. *> \verbatim
  251. *> IWORK is INTEGER array, dimension (5*N)
  252. *> \endverbatim
  253. *>
  254. *> \param[out] IFAIL
  255. *> \verbatim
  256. *> IFAIL is INTEGER array, dimension (N)
  257. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  258. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  259. *> indices of the eigenvectors that failed to converge.
  260. *> If JOBZ = 'N', then IFAIL is not referenced.
  261. *> \endverbatim
  262. *>
  263. *> \param[out] INFO
  264. *> \verbatim
  265. *> INFO is INTEGER
  266. *> = 0: successful exit
  267. *> < 0: if INFO = -i, the i-th argument had an illegal value
  268. *> > 0: SPOTRF or SSYEVX returned an error code:
  269. *> <= N: if INFO = i, SSYEVX failed to converge;
  270. *> i eigenvectors failed to converge. Their indices
  271. *> are stored in array IFAIL.
  272. *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
  273. *> minor of order i of B is not positive definite.
  274. *> The factorization of B could not be completed and
  275. *> no eigenvalues or eigenvectors were computed.
  276. *> \endverbatim
  277. *
  278. * Authors:
  279. * ========
  280. *
  281. *> \author Univ. of Tennessee
  282. *> \author Univ. of California Berkeley
  283. *> \author Univ. of Colorado Denver
  284. *> \author NAG Ltd.
  285. *
  286. *> \date June 2016
  287. *
  288. *> \ingroup realSYeigen
  289. *
  290. *> \par Contributors:
  291. * ==================
  292. *>
  293. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  294. *
  295. * =====================================================================
  296. SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
  297. $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
  298. $ LWORK, IWORK, IFAIL, INFO )
  299. *
  300. * -- LAPACK driver routine (version 3.7.1) --
  301. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  302. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  303. * June 2016
  304. *
  305. * .. Scalar Arguments ..
  306. CHARACTER JOBZ, RANGE, UPLO
  307. INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
  308. REAL ABSTOL, VL, VU
  309. * ..
  310. * .. Array Arguments ..
  311. INTEGER IFAIL( * ), IWORK( * )
  312. REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
  313. $ Z( LDZ, * )
  314. * ..
  315. *
  316. * =====================================================================
  317. *
  318. * .. Parameters ..
  319. REAL ONE
  320. PARAMETER ( ONE = 1.0E+0 )
  321. * ..
  322. * .. Local Scalars ..
  323. LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
  324. CHARACTER TRANS
  325. INTEGER LWKMIN, LWKOPT, NB
  326. * ..
  327. * .. External Functions ..
  328. LOGICAL LSAME
  329. INTEGER ILAENV
  330. EXTERNAL ILAENV, LSAME
  331. * ..
  332. * .. External Subroutines ..
  333. EXTERNAL SPOTRF, SSYEVX, SSYGST, STRMM, STRSM, XERBLA
  334. * ..
  335. * .. Intrinsic Functions ..
  336. INTRINSIC MAX, MIN
  337. * ..
  338. * .. Executable Statements ..
  339. *
  340. * Test the input parameters.
  341. *
  342. UPPER = LSAME( UPLO, 'U' )
  343. WANTZ = LSAME( JOBZ, 'V' )
  344. ALLEIG = LSAME( RANGE, 'A' )
  345. VALEIG = LSAME( RANGE, 'V' )
  346. INDEIG = LSAME( RANGE, 'I' )
  347. LQUERY = ( LWORK.EQ.-1 )
  348. *
  349. INFO = 0
  350. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  351. INFO = -1
  352. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  353. INFO = -2
  354. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  355. INFO = -3
  356. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  357. INFO = -4
  358. ELSE IF( N.LT.0 ) THEN
  359. INFO = -5
  360. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  361. INFO = -7
  362. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  363. INFO = -9
  364. ELSE
  365. IF( VALEIG ) THEN
  366. IF( N.GT.0 .AND. VU.LE.VL )
  367. $ INFO = -11
  368. ELSE IF( INDEIG ) THEN
  369. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  370. INFO = -12
  371. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  372. INFO = -13
  373. END IF
  374. END IF
  375. END IF
  376. IF (INFO.EQ.0) THEN
  377. IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
  378. INFO = -18
  379. END IF
  380. END IF
  381. *
  382. IF( INFO.EQ.0 ) THEN
  383. LWKMIN = MAX( 1, 8*N )
  384. NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
  385. LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
  386. WORK( 1 ) = LWKOPT
  387. *
  388. IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  389. INFO = -20
  390. END IF
  391. END IF
  392. *
  393. IF( INFO.NE.0 ) THEN
  394. CALL XERBLA( 'SSYGVX', -INFO )
  395. RETURN
  396. ELSE IF( LQUERY ) THEN
  397. RETURN
  398. END IF
  399. *
  400. * Quick return if possible
  401. *
  402. M = 0
  403. IF( N.EQ.0 ) THEN
  404. RETURN
  405. END IF
  406. *
  407. * Form a Cholesky factorization of B.
  408. *
  409. CALL SPOTRF( UPLO, N, B, LDB, INFO )
  410. IF( INFO.NE.0 ) THEN
  411. INFO = N + INFO
  412. RETURN
  413. END IF
  414. *
  415. * Transform problem to standard eigenvalue problem and solve.
  416. *
  417. CALL SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  418. CALL SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
  419. $ M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
  420. *
  421. IF( WANTZ ) THEN
  422. *
  423. * Backtransform eigenvectors to the original problem.
  424. *
  425. IF( INFO.GT.0 )
  426. $ M = INFO - 1
  427. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  428. *
  429. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  430. * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  431. *
  432. IF( UPPER ) THEN
  433. TRANS = 'N'
  434. ELSE
  435. TRANS = 'T'
  436. END IF
  437. *
  438. CALL STRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
  439. $ LDB, Z, LDZ )
  440. *
  441. ELSE IF( ITYPE.EQ.3 ) THEN
  442. *
  443. * For B*A*x=(lambda)*x;
  444. * backtransform eigenvectors: x = L*y or U**T*y
  445. *
  446. IF( UPPER ) THEN
  447. TRANS = 'T'
  448. ELSE
  449. TRANS = 'N'
  450. END IF
  451. *
  452. CALL STRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
  453. $ LDB, Z, LDZ )
  454. END IF
  455. END IF
  456. *
  457. * Set WORK(1) to optimal workspace size.
  458. *
  459. WORK( 1 ) = LWKOPT
  460. *
  461. RETURN
  462. *
  463. * End of SSYGVX
  464. *
  465. END