You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlacn2.f 7.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. *> \brief \b DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLACN2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlacn2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlacn2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlacn2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER KASE, N
  25. * DOUBLE PRECISION EST
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER ISGN( * ), ISAVE( 3 )
  29. * DOUBLE PRECISION V( * ), X( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DLACN2 estimates the 1-norm of a square, real matrix A.
  39. *> Reverse communication is used for evaluating matrix-vector products.
  40. *> \endverbatim
  41. *
  42. * Arguments:
  43. * ==========
  44. *
  45. *> \param[in] N
  46. *> \verbatim
  47. *> N is INTEGER
  48. *> The order of the matrix. N >= 1.
  49. *> \endverbatim
  50. *>
  51. *> \param[out] V
  52. *> \verbatim
  53. *> V is DOUBLE PRECISION array, dimension (N)
  54. *> On the final return, V = A*W, where EST = norm(V)/norm(W)
  55. *> (W is not returned).
  56. *> \endverbatim
  57. *>
  58. *> \param[in,out] X
  59. *> \verbatim
  60. *> X is DOUBLE PRECISION array, dimension (N)
  61. *> On an intermediate return, X should be overwritten by
  62. *> A * X, if KASE=1,
  63. *> A**T * X, if KASE=2,
  64. *> and DLACN2 must be re-called with all the other parameters
  65. *> unchanged.
  66. *> \endverbatim
  67. *>
  68. *> \param[out] ISGN
  69. *> \verbatim
  70. *> ISGN is INTEGER array, dimension (N)
  71. *> \endverbatim
  72. *>
  73. *> \param[in,out] EST
  74. *> \verbatim
  75. *> EST is DOUBLE PRECISION
  76. *> On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
  77. *> unchanged from the previous call to DLACN2.
  78. *> On exit, EST is an estimate (a lower bound) for norm(A).
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] KASE
  82. *> \verbatim
  83. *> KASE is INTEGER
  84. *> On the initial call to DLACN2, KASE should be 0.
  85. *> On an intermediate return, KASE will be 1 or 2, indicating
  86. *> whether X should be overwritten by A * X or A**T * X.
  87. *> On the final return from DLACN2, KASE will again be 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] ISAVE
  91. *> \verbatim
  92. *> ISAVE is INTEGER array, dimension (3)
  93. *> ISAVE is used to save variables between calls to DLACN2
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \date December 2016
  105. *
  106. *> \ingroup doubleOTHERauxiliary
  107. *
  108. *> \par Further Details:
  109. * =====================
  110. *>
  111. *> \verbatim
  112. *>
  113. *> Originally named SONEST, dated March 16, 1988.
  114. *>
  115. *> This is a thread safe version of DLACON, which uses the array ISAVE
  116. *> in place of a SAVE statement, as follows:
  117. *>
  118. *> DLACON DLACN2
  119. *> JUMP ISAVE(1)
  120. *> J ISAVE(2)
  121. *> ITER ISAVE(3)
  122. *> \endverbatim
  123. *
  124. *> \par Contributors:
  125. * ==================
  126. *>
  127. *> Nick Higham, University of Manchester
  128. *
  129. *> \par References:
  130. * ================
  131. *>
  132. *> N.J. Higham, "FORTRAN codes for estimating the one-norm of
  133. *> a real or complex matrix, with applications to condition estimation",
  134. *> ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
  135. *>
  136. * =====================================================================
  137. SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
  138. *
  139. * -- LAPACK auxiliary routine (version 3.7.0) --
  140. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  141. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142. * December 2016
  143. *
  144. * .. Scalar Arguments ..
  145. INTEGER KASE, N
  146. DOUBLE PRECISION EST
  147. * ..
  148. * .. Array Arguments ..
  149. INTEGER ISGN( * ), ISAVE( 3 )
  150. DOUBLE PRECISION V( * ), X( * )
  151. * ..
  152. *
  153. * =====================================================================
  154. *
  155. * .. Parameters ..
  156. INTEGER ITMAX
  157. PARAMETER ( ITMAX = 5 )
  158. DOUBLE PRECISION ZERO, ONE, TWO
  159. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  160. * ..
  161. * .. Local Scalars ..
  162. INTEGER I, JLAST
  163. DOUBLE PRECISION ALTSGN, ESTOLD, TEMP
  164. * ..
  165. * .. External Functions ..
  166. INTEGER IDAMAX
  167. DOUBLE PRECISION DASUM
  168. EXTERNAL IDAMAX, DASUM
  169. * ..
  170. * .. External Subroutines ..
  171. EXTERNAL DCOPY
  172. * ..
  173. * .. Intrinsic Functions ..
  174. INTRINSIC ABS, DBLE, NINT, SIGN
  175. * ..
  176. * .. Executable Statements ..
  177. *
  178. IF( KASE.EQ.0 ) THEN
  179. DO 10 I = 1, N
  180. X( I ) = ONE / DBLE( N )
  181. 10 CONTINUE
  182. KASE = 1
  183. ISAVE( 1 ) = 1
  184. RETURN
  185. END IF
  186. *
  187. GO TO ( 20, 40, 70, 110, 140 )ISAVE( 1 )
  188. *
  189. * ................ ENTRY (ISAVE( 1 ) = 1)
  190. * FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
  191. *
  192. 20 CONTINUE
  193. IF( N.EQ.1 ) THEN
  194. V( 1 ) = X( 1 )
  195. EST = ABS( V( 1 ) )
  196. * ... QUIT
  197. GO TO 150
  198. END IF
  199. EST = DASUM( N, X, 1 )
  200. *
  201. DO 30 I = 1, N
  202. X( I ) = SIGN( ONE, X( I ) )
  203. ISGN( I ) = NINT( X( I ) )
  204. 30 CONTINUE
  205. KASE = 2
  206. ISAVE( 1 ) = 2
  207. RETURN
  208. *
  209. * ................ ENTRY (ISAVE( 1 ) = 2)
  210. * FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
  211. *
  212. 40 CONTINUE
  213. ISAVE( 2 ) = IDAMAX( N, X, 1 )
  214. ISAVE( 3 ) = 2
  215. *
  216. * MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
  217. *
  218. 50 CONTINUE
  219. DO 60 I = 1, N
  220. X( I ) = ZERO
  221. 60 CONTINUE
  222. X( ISAVE( 2 ) ) = ONE
  223. KASE = 1
  224. ISAVE( 1 ) = 3
  225. RETURN
  226. *
  227. * ................ ENTRY (ISAVE( 1 ) = 3)
  228. * X HAS BEEN OVERWRITTEN BY A*X.
  229. *
  230. 70 CONTINUE
  231. CALL DCOPY( N, X, 1, V, 1 )
  232. ESTOLD = EST
  233. EST = DASUM( N, V, 1 )
  234. DO 80 I = 1, N
  235. IF( NINT( SIGN( ONE, X( I ) ) ).NE.ISGN( I ) )
  236. $ GO TO 90
  237. 80 CONTINUE
  238. * REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
  239. GO TO 120
  240. *
  241. 90 CONTINUE
  242. * TEST FOR CYCLING.
  243. IF( EST.LE.ESTOLD )
  244. $ GO TO 120
  245. *
  246. DO 100 I = 1, N
  247. X( I ) = SIGN( ONE, X( I ) )
  248. ISGN( I ) = NINT( X( I ) )
  249. 100 CONTINUE
  250. KASE = 2
  251. ISAVE( 1 ) = 4
  252. RETURN
  253. *
  254. * ................ ENTRY (ISAVE( 1 ) = 4)
  255. * X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
  256. *
  257. 110 CONTINUE
  258. JLAST = ISAVE( 2 )
  259. ISAVE( 2 ) = IDAMAX( N, X, 1 )
  260. IF( ( X( JLAST ).NE.ABS( X( ISAVE( 2 ) ) ) ) .AND.
  261. $ ( ISAVE( 3 ).LT.ITMAX ) ) THEN
  262. ISAVE( 3 ) = ISAVE( 3 ) + 1
  263. GO TO 50
  264. END IF
  265. *
  266. * ITERATION COMPLETE. FINAL STAGE.
  267. *
  268. 120 CONTINUE
  269. ALTSGN = ONE
  270. DO 130 I = 1, N
  271. X( I ) = ALTSGN*( ONE+DBLE( I-1 ) / DBLE( N-1 ) )
  272. ALTSGN = -ALTSGN
  273. 130 CONTINUE
  274. KASE = 1
  275. ISAVE( 1 ) = 5
  276. RETURN
  277. *
  278. * ................ ENTRY (ISAVE( 1 ) = 5)
  279. * X HAS BEEN OVERWRITTEN BY A*X.
  280. *
  281. 140 CONTINUE
  282. TEMP = TWO*( DASUM( N, X, 1 ) / DBLE( 3*N ) )
  283. IF( TEMP.GT.EST ) THEN
  284. CALL DCOPY( N, X, 1, V, 1 )
  285. EST = TEMP
  286. END IF
  287. *
  288. 150 CONTINUE
  289. KASE = 0
  290. RETURN
  291. *
  292. * End of DLACN2
  293. *
  294. END