You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_geamv.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. *> \brief \b DLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_GEAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_geamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_geamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_geamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  22. * Y, INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION ALPHA, BETA
  26. * INTEGER INCX, INCY, LDA, M, N, TRANS
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DLA_GEAMV performs one of the matrix-vector operations
  39. *>
  40. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  41. *> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
  42. *>
  43. *> where alpha and beta are scalars, x and y are vectors and A is an
  44. *> m by n matrix.
  45. *>
  46. *> This function is primarily used in calculating error bounds.
  47. *> To protect against underflow during evaluation, components in
  48. *> the resulting vector are perturbed away from zero by (N+1)
  49. *> times the underflow threshold. To prevent unnecessarily large
  50. *> errors for block-structure embedded in general matrices,
  51. *> "symbolically" zero components are not perturbed. A zero
  52. *> entry is considered "symbolic" if all multiplications involved
  53. *> in computing that entry have at least one zero multiplicand.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] TRANS
  60. *> \verbatim
  61. *> TRANS is INTEGER
  62. *> On entry, TRANS specifies the operation to be performed as
  63. *> follows:
  64. *>
  65. *> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
  66. *> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  67. *> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  68. *>
  69. *> Unchanged on exit.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] M
  73. *> \verbatim
  74. *> M is INTEGER
  75. *> On entry, M specifies the number of rows of the matrix A.
  76. *> M must be at least zero.
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> On entry, N specifies the number of columns of the matrix A.
  84. *> N must be at least zero.
  85. *> Unchanged on exit.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] ALPHA
  89. *> \verbatim
  90. *> ALPHA is DOUBLE PRECISION
  91. *> On entry, ALPHA specifies the scalar alpha.
  92. *> Unchanged on exit.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] A
  96. *> \verbatim
  97. *> A is DOUBLE PRECISION array, dimension ( LDA, n )
  98. *> Before entry, the leading m by n part of the array A must
  99. *> contain the matrix of coefficients.
  100. *> Unchanged on exit.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDA
  104. *> \verbatim
  105. *> LDA is INTEGER
  106. *> On entry, LDA specifies the first dimension of A as declared
  107. *> in the calling (sub) program. LDA must be at least
  108. *> max( 1, m ).
  109. *> Unchanged on exit.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] X
  113. *> \verbatim
  114. *> X is DOUBLE PRECISION array, dimension
  115. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  116. *> and at least
  117. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  118. *> Before entry, the incremented array X must contain the
  119. *> vector x.
  120. *> Unchanged on exit.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] INCX
  124. *> \verbatim
  125. *> INCX is INTEGER
  126. *> On entry, INCX specifies the increment for the elements of
  127. *> X. INCX must not be zero.
  128. *> Unchanged on exit.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] BETA
  132. *> \verbatim
  133. *> BETA is DOUBLE PRECISION
  134. *> On entry, BETA specifies the scalar beta. When BETA is
  135. *> supplied as zero then Y need not be set on input.
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *>
  139. *> \param[in,out] Y
  140. *> \verbatim
  141. *> Y is DOUBLE PRECISION array,
  142. *> dimension at least
  143. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  144. *> and at least
  145. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  146. *> Before entry with BETA non-zero, the incremented array Y
  147. *> must contain the vector y. On exit, Y is overwritten by the
  148. *> updated vector y.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] INCY
  152. *> \verbatim
  153. *> INCY is INTEGER
  154. *> On entry, INCY specifies the increment for the elements of
  155. *> Y. INCY must not be zero.
  156. *> Unchanged on exit.
  157. *>
  158. *> Level 2 Blas routine.
  159. *> \endverbatim
  160. *
  161. * Authors:
  162. * ========
  163. *
  164. *> \author Univ. of Tennessee
  165. *> \author Univ. of California Berkeley
  166. *> \author Univ. of Colorado Denver
  167. *> \author NAG Ltd.
  168. *
  169. *> \date June 2017
  170. *
  171. *> \ingroup doubleGEcomputational
  172. *
  173. * =====================================================================
  174. SUBROUTINE DLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  175. $ Y, INCY )
  176. *
  177. * -- LAPACK computational routine (version 3.7.1) --
  178. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  179. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  180. * June 2017
  181. *
  182. * .. Scalar Arguments ..
  183. DOUBLE PRECISION ALPHA, BETA
  184. INTEGER INCX, INCY, LDA, M, N, TRANS
  185. * ..
  186. * .. Array Arguments ..
  187. DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
  188. * ..
  189. *
  190. * =====================================================================
  191. *
  192. * .. Parameters ..
  193. DOUBLE PRECISION ONE, ZERO
  194. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  195. * ..
  196. * .. Local Scalars ..
  197. LOGICAL SYMB_ZERO
  198. DOUBLE PRECISION TEMP, SAFE1
  199. INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY
  200. * ..
  201. * .. External Subroutines ..
  202. EXTERNAL XERBLA, DLAMCH
  203. DOUBLE PRECISION DLAMCH
  204. * ..
  205. * .. External Functions ..
  206. EXTERNAL ILATRANS
  207. INTEGER ILATRANS
  208. * ..
  209. * .. Intrinsic Functions ..
  210. INTRINSIC MAX, ABS, SIGN
  211. * ..
  212. * .. Executable Statements ..
  213. *
  214. * Test the input parameters.
  215. *
  216. INFO = 0
  217. IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  218. $ .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  219. $ .OR. ( TRANS.EQ.ILATRANS( 'C' )) ) ) THEN
  220. INFO = 1
  221. ELSE IF( M.LT.0 )THEN
  222. INFO = 2
  223. ELSE IF( N.LT.0 )THEN
  224. INFO = 3
  225. ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  226. INFO = 6
  227. ELSE IF( INCX.EQ.0 )THEN
  228. INFO = 8
  229. ELSE IF( INCY.EQ.0 )THEN
  230. INFO = 11
  231. END IF
  232. IF( INFO.NE.0 )THEN
  233. CALL XERBLA( 'DLA_GEAMV ', INFO )
  234. RETURN
  235. END IF
  236. *
  237. * Quick return if possible.
  238. *
  239. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  240. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  241. $ RETURN
  242. *
  243. * Set LENX and LENY, the lengths of the vectors x and y, and set
  244. * up the start points in X and Y.
  245. *
  246. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  247. LENX = N
  248. LENY = M
  249. ELSE
  250. LENX = M
  251. LENY = N
  252. END IF
  253. IF( INCX.GT.0 )THEN
  254. KX = 1
  255. ELSE
  256. KX = 1 - ( LENX - 1 )*INCX
  257. END IF
  258. IF( INCY.GT.0 )THEN
  259. KY = 1
  260. ELSE
  261. KY = 1 - ( LENY - 1 )*INCY
  262. END IF
  263. *
  264. * Set SAFE1 essentially to be the underflow threshold times the
  265. * number of additions in each row.
  266. *
  267. SAFE1 = DLAMCH( 'Safe minimum' )
  268. SAFE1 = (N+1)*SAFE1
  269. *
  270. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  271. *
  272. * The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  273. * the inexact flag. Still doesn't help change the iteration order
  274. * to per-column.
  275. *
  276. IY = KY
  277. IF ( INCX.EQ.1 ) THEN
  278. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  279. DO I = 1, LENY
  280. IF ( BETA .EQ. ZERO ) THEN
  281. SYMB_ZERO = .TRUE.
  282. Y( IY ) = 0.0D+0
  283. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  284. SYMB_ZERO = .TRUE.
  285. ELSE
  286. SYMB_ZERO = .FALSE.
  287. Y( IY ) = BETA * ABS( Y( IY ) )
  288. END IF
  289. IF ( ALPHA .NE. ZERO ) THEN
  290. DO J = 1, LENX
  291. TEMP = ABS( A( I, J ) )
  292. SYMB_ZERO = SYMB_ZERO .AND.
  293. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  294. Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  295. END DO
  296. END IF
  297. IF ( .NOT.SYMB_ZERO )
  298. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  299. IY = IY + INCY
  300. END DO
  301. ELSE
  302. DO I = 1, LENY
  303. IF ( BETA .EQ. ZERO ) THEN
  304. SYMB_ZERO = .TRUE.
  305. Y( IY ) = 0.0D+0
  306. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  307. SYMB_ZERO = .TRUE.
  308. ELSE
  309. SYMB_ZERO = .FALSE.
  310. Y( IY ) = BETA * ABS( Y( IY ) )
  311. END IF
  312. IF ( ALPHA .NE. ZERO ) THEN
  313. DO J = 1, LENX
  314. TEMP = ABS( A( J, I ) )
  315. SYMB_ZERO = SYMB_ZERO .AND.
  316. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  317. Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  318. END DO
  319. END IF
  320. IF ( .NOT.SYMB_ZERO )
  321. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  322. IY = IY + INCY
  323. END DO
  324. END IF
  325. ELSE
  326. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  327. DO I = 1, LENY
  328. IF ( BETA .EQ. ZERO ) THEN
  329. SYMB_ZERO = .TRUE.
  330. Y( IY ) = 0.0D+0
  331. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  332. SYMB_ZERO = .TRUE.
  333. ELSE
  334. SYMB_ZERO = .FALSE.
  335. Y( IY ) = BETA * ABS( Y( IY ) )
  336. END IF
  337. IF ( ALPHA .NE. ZERO ) THEN
  338. JX = KX
  339. DO J = 1, LENX
  340. TEMP = ABS( A( I, J ) )
  341. SYMB_ZERO = SYMB_ZERO .AND.
  342. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  343. Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  344. JX = JX + INCX
  345. END DO
  346. END IF
  347. IF (.NOT.SYMB_ZERO)
  348. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  349. IY = IY + INCY
  350. END DO
  351. ELSE
  352. DO I = 1, LENY
  353. IF ( BETA .EQ. ZERO ) THEN
  354. SYMB_ZERO = .TRUE.
  355. Y( IY ) = 0.0D+0
  356. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  357. SYMB_ZERO = .TRUE.
  358. ELSE
  359. SYMB_ZERO = .FALSE.
  360. Y( IY ) = BETA * ABS( Y( IY ) )
  361. END IF
  362. IF ( ALPHA .NE. ZERO ) THEN
  363. JX = KX
  364. DO J = 1, LENX
  365. TEMP = ABS( A( J, I ) )
  366. SYMB_ZERO = SYMB_ZERO .AND.
  367. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  368. Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  369. JX = JX + INCX
  370. END DO
  371. END IF
  372. IF (.NOT.SYMB_ZERO)
  373. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  374. IY = IY + INCY
  375. END DO
  376. END IF
  377. END IF
  378. *
  379. RETURN
  380. *
  381. * End of DLA_GEAMV
  382. *
  383. END