You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctgsy2.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. *> \brief \b CTGSY2 solves the generalized Sylvester equation (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTGSY2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsy2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsy2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsy2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
  22. * LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER TRANS
  27. * INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
  28. * REAL RDSCAL, RDSUM, SCALE
  29. * ..
  30. * .. Array Arguments ..
  31. * COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
  32. * $ D( LDD, * ), E( LDE, * ), F( LDF, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> CTGSY2 solves the generalized Sylvester equation
  42. *>
  43. *> A * R - L * B = scale * C (1)
  44. *> D * R - L * E = scale * F
  45. *>
  46. *> using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
  47. *> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
  48. *> N-by-N and M-by-N, respectively. A, B, D and E are upper triangular
  49. *> (i.e., (A,D) and (B,E) in generalized Schur form).
  50. *>
  51. *> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
  52. *> scaling factor chosen to avoid overflow.
  53. *>
  54. *> In matrix notation solving equation (1) corresponds to solve
  55. *> Zx = scale * b, where Z is defined as
  56. *>
  57. *> Z = [ kron(In, A) -kron(B**H, Im) ] (2)
  58. *> [ kron(In, D) -kron(E**H, Im) ],
  59. *>
  60. *> Ik is the identity matrix of size k and X**H is the transpose of X.
  61. *> kron(X, Y) is the Kronecker product between the matrices X and Y.
  62. *>
  63. *> If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b
  64. *> is solved for, which is equivalent to solve for R and L in
  65. *>
  66. *> A**H * R + D**H * L = scale * C (3)
  67. *> R * B**H + L * E**H = scale * -F
  68. *>
  69. *> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
  70. *> = sigma_min(Z) using reverse communication with CLACON.
  71. *>
  72. *> CTGSY2 also (IJOB >= 1) contributes to the computation in CTGSYL
  73. *> of an upper bound on the separation between to matrix pairs. Then
  74. *> the input (A, D), (B, E) are sub-pencils of two matrix pairs in
  75. *> CTGSYL.
  76. *> \endverbatim
  77. *
  78. * Arguments:
  79. * ==========
  80. *
  81. *> \param[in] TRANS
  82. *> \verbatim
  83. *> TRANS is CHARACTER*1
  84. *> = 'N': solve the generalized Sylvester equation (1).
  85. *> = 'T': solve the 'transposed' system (3).
  86. *> \endverbatim
  87. *>
  88. *> \param[in] IJOB
  89. *> \verbatim
  90. *> IJOB is INTEGER
  91. *> Specifies what kind of functionality to be performed.
  92. *> = 0: solve (1) only.
  93. *> = 1: A contribution from this subsystem to a Frobenius
  94. *> norm-based estimate of the separation between two matrix
  95. *> pairs is computed. (look ahead strategy is used).
  96. *> = 2: A contribution from this subsystem to a Frobenius
  97. *> norm-based estimate of the separation between two matrix
  98. *> pairs is computed. (SGECON on sub-systems is used.)
  99. *> Not referenced if TRANS = 'T'.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] M
  103. *> \verbatim
  104. *> M is INTEGER
  105. *> On entry, M specifies the order of A and D, and the row
  106. *> dimension of C, F, R and L.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] N
  110. *> \verbatim
  111. *> N is INTEGER
  112. *> On entry, N specifies the order of B and E, and the column
  113. *> dimension of C, F, R and L.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] A
  117. *> \verbatim
  118. *> A is COMPLEX array, dimension (LDA, M)
  119. *> On entry, A contains an upper triangular matrix.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDA
  123. *> \verbatim
  124. *> LDA is INTEGER
  125. *> The leading dimension of the matrix A. LDA >= max(1, M).
  126. *> \endverbatim
  127. *>
  128. *> \param[in] B
  129. *> \verbatim
  130. *> B is COMPLEX array, dimension (LDB, N)
  131. *> On entry, B contains an upper triangular matrix.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LDB
  135. *> \verbatim
  136. *> LDB is INTEGER
  137. *> The leading dimension of the matrix B. LDB >= max(1, N).
  138. *> \endverbatim
  139. *>
  140. *> \param[in,out] C
  141. *> \verbatim
  142. *> C is COMPLEX array, dimension (LDC, N)
  143. *> On entry, C contains the right-hand-side of the first matrix
  144. *> equation in (1).
  145. *> On exit, if IJOB = 0, C has been overwritten by the solution
  146. *> R.
  147. *> \endverbatim
  148. *>
  149. *> \param[in] LDC
  150. *> \verbatim
  151. *> LDC is INTEGER
  152. *> The leading dimension of the matrix C. LDC >= max(1, M).
  153. *> \endverbatim
  154. *>
  155. *> \param[in] D
  156. *> \verbatim
  157. *> D is COMPLEX array, dimension (LDD, M)
  158. *> On entry, D contains an upper triangular matrix.
  159. *> \endverbatim
  160. *>
  161. *> \param[in] LDD
  162. *> \verbatim
  163. *> LDD is INTEGER
  164. *> The leading dimension of the matrix D. LDD >= max(1, M).
  165. *> \endverbatim
  166. *>
  167. *> \param[in] E
  168. *> \verbatim
  169. *> E is COMPLEX array, dimension (LDE, N)
  170. *> On entry, E contains an upper triangular matrix.
  171. *> \endverbatim
  172. *>
  173. *> \param[in] LDE
  174. *> \verbatim
  175. *> LDE is INTEGER
  176. *> The leading dimension of the matrix E. LDE >= max(1, N).
  177. *> \endverbatim
  178. *>
  179. *> \param[in,out] F
  180. *> \verbatim
  181. *> F is COMPLEX array, dimension (LDF, N)
  182. *> On entry, F contains the right-hand-side of the second matrix
  183. *> equation in (1).
  184. *> On exit, if IJOB = 0, F has been overwritten by the solution
  185. *> L.
  186. *> \endverbatim
  187. *>
  188. *> \param[in] LDF
  189. *> \verbatim
  190. *> LDF is INTEGER
  191. *> The leading dimension of the matrix F. LDF >= max(1, M).
  192. *> \endverbatim
  193. *>
  194. *> \param[out] SCALE
  195. *> \verbatim
  196. *> SCALE is REAL
  197. *> On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
  198. *> R and L (C and F on entry) will hold the solutions to a
  199. *> slightly perturbed system but the input matrices A, B, D and
  200. *> E have not been changed. If SCALE = 0, R and L will hold the
  201. *> solutions to the homogeneous system with C = F = 0.
  202. *> Normally, SCALE = 1.
  203. *> \endverbatim
  204. *>
  205. *> \param[in,out] RDSUM
  206. *> \verbatim
  207. *> RDSUM is REAL
  208. *> On entry, the sum of squares of computed contributions to
  209. *> the Dif-estimate under computation by CTGSYL, where the
  210. *> scaling factor RDSCAL (see below) has been factored out.
  211. *> On exit, the corresponding sum of squares updated with the
  212. *> contributions from the current sub-system.
  213. *> If TRANS = 'T' RDSUM is not touched.
  214. *> NOTE: RDSUM only makes sense when CTGSY2 is called by
  215. *> CTGSYL.
  216. *> \endverbatim
  217. *>
  218. *> \param[in,out] RDSCAL
  219. *> \verbatim
  220. *> RDSCAL is REAL
  221. *> On entry, scaling factor used to prevent overflow in RDSUM.
  222. *> On exit, RDSCAL is updated w.r.t. the current contributions
  223. *> in RDSUM.
  224. *> If TRANS = 'T', RDSCAL is not touched.
  225. *> NOTE: RDSCAL only makes sense when CTGSY2 is called by
  226. *> CTGSYL.
  227. *> \endverbatim
  228. *>
  229. *> \param[out] INFO
  230. *> \verbatim
  231. *> INFO is INTEGER
  232. *> On exit, if INFO is set to
  233. *> =0: Successful exit
  234. *> <0: If INFO = -i, input argument number i is illegal.
  235. *> >0: The matrix pairs (A, D) and (B, E) have common or very
  236. *> close eigenvalues.
  237. *> \endverbatim
  238. *
  239. * Authors:
  240. * ========
  241. *
  242. *> \author Univ. of Tennessee
  243. *> \author Univ. of California Berkeley
  244. *> \author Univ. of Colorado Denver
  245. *> \author NAG Ltd.
  246. *
  247. *> \date December 2016
  248. *
  249. *> \ingroup complexSYauxiliary
  250. *
  251. *> \par Contributors:
  252. * ==================
  253. *>
  254. *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  255. *> Umea University, S-901 87 Umea, Sweden.
  256. *
  257. * =====================================================================
  258. SUBROUTINE CTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
  259. $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
  260. $ INFO )
  261. *
  262. * -- LAPACK auxiliary routine (version 3.7.0) --
  263. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  264. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  265. * December 2016
  266. *
  267. * .. Scalar Arguments ..
  268. CHARACTER TRANS
  269. INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
  270. REAL RDSCAL, RDSUM, SCALE
  271. * ..
  272. * .. Array Arguments ..
  273. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
  274. $ D( LDD, * ), E( LDE, * ), F( LDF, * )
  275. * ..
  276. *
  277. * =====================================================================
  278. *
  279. * .. Parameters ..
  280. REAL ZERO, ONE
  281. INTEGER LDZ
  282. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, LDZ = 2 )
  283. * ..
  284. * .. Local Scalars ..
  285. LOGICAL NOTRAN
  286. INTEGER I, IERR, J, K
  287. REAL SCALOC
  288. COMPLEX ALPHA
  289. * ..
  290. * .. Local Arrays ..
  291. INTEGER IPIV( LDZ ), JPIV( LDZ )
  292. COMPLEX RHS( LDZ ), Z( LDZ, LDZ )
  293. * ..
  294. * .. External Functions ..
  295. LOGICAL LSAME
  296. EXTERNAL LSAME
  297. * ..
  298. * .. External Subroutines ..
  299. EXTERNAL CAXPY, CGESC2, CGETC2, CSCAL, CLATDF, XERBLA
  300. * ..
  301. * .. Intrinsic Functions ..
  302. INTRINSIC CMPLX, CONJG, MAX
  303. * ..
  304. * .. Executable Statements ..
  305. *
  306. * Decode and test input parameters
  307. *
  308. INFO = 0
  309. IERR = 0
  310. NOTRAN = LSAME( TRANS, 'N' )
  311. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  312. INFO = -1
  313. ELSE IF( NOTRAN ) THEN
  314. IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
  315. INFO = -2
  316. END IF
  317. END IF
  318. IF( INFO.EQ.0 ) THEN
  319. IF( M.LE.0 ) THEN
  320. INFO = -3
  321. ELSE IF( N.LE.0 ) THEN
  322. INFO = -4
  323. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  324. INFO = -6
  325. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  326. INFO = -8
  327. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  328. INFO = -10
  329. ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
  330. INFO = -12
  331. ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
  332. INFO = -14
  333. ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
  334. INFO = -16
  335. END IF
  336. END IF
  337. IF( INFO.NE.0 ) THEN
  338. CALL XERBLA( 'CTGSY2', -INFO )
  339. RETURN
  340. END IF
  341. *
  342. IF( NOTRAN ) THEN
  343. *
  344. * Solve (I, J) - system
  345. * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
  346. * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
  347. * for I = M, M - 1, ..., 1; J = 1, 2, ..., N
  348. *
  349. SCALE = ONE
  350. SCALOC = ONE
  351. DO 30 J = 1, N
  352. DO 20 I = M, 1, -1
  353. *
  354. * Build 2 by 2 system
  355. *
  356. Z( 1, 1 ) = A( I, I )
  357. Z( 2, 1 ) = D( I, I )
  358. Z( 1, 2 ) = -B( J, J )
  359. Z( 2, 2 ) = -E( J, J )
  360. *
  361. * Set up right hand side(s)
  362. *
  363. RHS( 1 ) = C( I, J )
  364. RHS( 2 ) = F( I, J )
  365. *
  366. * Solve Z * x = RHS
  367. *
  368. CALL CGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
  369. IF( IERR.GT.0 )
  370. $ INFO = IERR
  371. IF( IJOB.EQ.0 ) THEN
  372. CALL CGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
  373. IF( SCALOC.NE.ONE ) THEN
  374. DO 10 K = 1, N
  375. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
  376. $ 1 )
  377. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
  378. $ 1 )
  379. 10 CONTINUE
  380. SCALE = SCALE*SCALOC
  381. END IF
  382. ELSE
  383. CALL CLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL,
  384. $ IPIV, JPIV )
  385. END IF
  386. *
  387. * Unpack solution vector(s)
  388. *
  389. C( I, J ) = RHS( 1 )
  390. F( I, J ) = RHS( 2 )
  391. *
  392. * Substitute R(I, J) and L(I, J) into remaining equation.
  393. *
  394. IF( I.GT.1 ) THEN
  395. ALPHA = -RHS( 1 )
  396. CALL CAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 )
  397. CALL CAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 )
  398. END IF
  399. IF( J.LT.N ) THEN
  400. CALL CAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB,
  401. $ C( I, J+1 ), LDC )
  402. CALL CAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE,
  403. $ F( I, J+1 ), LDF )
  404. END IF
  405. *
  406. 20 CONTINUE
  407. 30 CONTINUE
  408. ELSE
  409. *
  410. * Solve transposed (I, J) - system:
  411. * A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J)
  412. * R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J)
  413. * for I = 1, 2, ..., M, J = N, N - 1, ..., 1
  414. *
  415. SCALE = ONE
  416. SCALOC = ONE
  417. DO 80 I = 1, M
  418. DO 70 J = N, 1, -1
  419. *
  420. * Build 2 by 2 system Z**H
  421. *
  422. Z( 1, 1 ) = CONJG( A( I, I ) )
  423. Z( 2, 1 ) = -CONJG( B( J, J ) )
  424. Z( 1, 2 ) = CONJG( D( I, I ) )
  425. Z( 2, 2 ) = -CONJG( E( J, J ) )
  426. *
  427. *
  428. * Set up right hand side(s)
  429. *
  430. RHS( 1 ) = C( I, J )
  431. RHS( 2 ) = F( I, J )
  432. *
  433. * Solve Z**H * x = RHS
  434. *
  435. CALL CGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
  436. IF( IERR.GT.0 )
  437. $ INFO = IERR
  438. CALL CGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
  439. IF( SCALOC.NE.ONE ) THEN
  440. DO 40 K = 1, N
  441. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
  442. $ 1 )
  443. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
  444. $ 1 )
  445. 40 CONTINUE
  446. SCALE = SCALE*SCALOC
  447. END IF
  448. *
  449. * Unpack solution vector(s)
  450. *
  451. C( I, J ) = RHS( 1 )
  452. F( I, J ) = RHS( 2 )
  453. *
  454. * Substitute R(I, J) and L(I, J) into remaining equation.
  455. *
  456. DO 50 K = 1, J - 1
  457. F( I, K ) = F( I, K ) + RHS( 1 )*CONJG( B( K, J ) ) +
  458. $ RHS( 2 )*CONJG( E( K, J ) )
  459. 50 CONTINUE
  460. DO 60 K = I + 1, M
  461. C( K, J ) = C( K, J ) - CONJG( A( I, K ) )*RHS( 1 ) -
  462. $ CONJG( D( I, K ) )*RHS( 2 )
  463. 60 CONTINUE
  464. *
  465. 70 CONTINUE
  466. 80 CONTINUE
  467. END IF
  468. RETURN
  469. *
  470. * End of CTGSY2
  471. *
  472. END