You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpoequb.f 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. *> \brief \b CPOEQUB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPOEQUB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpoequb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpoequb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpoequb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * REAL AMAX, SCOND
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( LDA, * )
  29. * REAL S( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CPOEQUB computes row and column scalings intended to equilibrate a
  39. *> Hermitian positive definite matrix A and reduce its condition number
  40. *> (with respect to the two-norm). S contains the scale factors,
  41. *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
  42. *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
  43. *> choice of S puts the condition number of B within a factor N of the
  44. *> smallest possible condition number over all possible diagonal
  45. *> scalings.
  46. *>
  47. *> This routine differs from CPOEQU by restricting the scaling factors
  48. *> to a power of the radix. Barring over- and underflow, scaling by
  49. *> these factors introduces no additional rounding errors. However, the
  50. *> scaled diagonal entries are no longer approximately 1 but lie
  51. *> between sqrt(radix) and 1/sqrt(radix).
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] A
  64. *> \verbatim
  65. *> A is COMPLEX array, dimension (LDA,N)
  66. *> The N-by-N Hermitian positive definite matrix whose scaling
  67. *> factors are to be computed. Only the diagonal elements of A
  68. *> are referenced.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] LDA
  72. *> \verbatim
  73. *> LDA is INTEGER
  74. *> The leading dimension of the array A. LDA >= max(1,N).
  75. *> \endverbatim
  76. *>
  77. *> \param[out] S
  78. *> \verbatim
  79. *> S is REAL array, dimension (N)
  80. *> If INFO = 0, S contains the scale factors for A.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] SCOND
  84. *> \verbatim
  85. *> SCOND is REAL
  86. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  87. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  88. *> large nor too small, it is not worth scaling by S.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] AMAX
  92. *> \verbatim
  93. *> AMAX is REAL
  94. *> Absolute value of largest matrix element. If AMAX is very
  95. *> close to overflow or very close to underflow, the matrix
  96. *> should be scaled.
  97. *> \endverbatim
  98. *>
  99. *> \param[out] INFO
  100. *> \verbatim
  101. *> INFO is INTEGER
  102. *> = 0: successful exit
  103. *> < 0: if INFO = -i, the i-th argument had an illegal value
  104. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  105. *> \endverbatim
  106. *
  107. * Authors:
  108. * ========
  109. *
  110. *> \author Univ. of Tennessee
  111. *> \author Univ. of California Berkeley
  112. *> \author Univ. of Colorado Denver
  113. *> \author NAG Ltd.
  114. *
  115. *> \date December 2016
  116. *
  117. *> \ingroup complexPOcomputational
  118. *
  119. * =====================================================================
  120. SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
  121. *
  122. * -- LAPACK computational routine (version 3.7.0) --
  123. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  124. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  125. * December 2016
  126. *
  127. * .. Scalar Arguments ..
  128. INTEGER INFO, LDA, N
  129. REAL AMAX, SCOND
  130. * ..
  131. * .. Array Arguments ..
  132. COMPLEX A( LDA, * )
  133. REAL S( * )
  134. * ..
  135. *
  136. * =====================================================================
  137. *
  138. * .. Parameters ..
  139. REAL ZERO, ONE
  140. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  141. * ..
  142. * .. Local Scalars ..
  143. INTEGER I
  144. REAL SMIN, BASE, TMP
  145. * ..
  146. * .. External Functions ..
  147. REAL SLAMCH
  148. EXTERNAL SLAMCH
  149. * ..
  150. * .. External Subroutines ..
  151. EXTERNAL XERBLA
  152. * ..
  153. * .. Intrinsic Functions ..
  154. INTRINSIC MAX, MIN, SQRT, LOG, INT
  155. * ..
  156. * .. Executable Statements ..
  157. *
  158. * Test the input parameters.
  159. *
  160. * Positive definite only performs 1 pass of equilibration.
  161. *
  162. INFO = 0
  163. IF( N.LT.0 ) THEN
  164. INFO = -1
  165. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  166. INFO = -3
  167. END IF
  168. IF( INFO.NE.0 ) THEN
  169. CALL XERBLA( 'CPOEQUB', -INFO )
  170. RETURN
  171. END IF
  172. *
  173. * Quick return if possible.
  174. *
  175. IF( N.EQ.0 ) THEN
  176. SCOND = ONE
  177. AMAX = ZERO
  178. RETURN
  179. END IF
  180. BASE = SLAMCH( 'B' )
  181. TMP = -0.5 / LOG ( BASE )
  182. *
  183. * Find the minimum and maximum diagonal elements.
  184. *
  185. S( 1 ) = A( 1, 1 )
  186. SMIN = S( 1 )
  187. AMAX = S( 1 )
  188. DO 10 I = 2, N
  189. S( I ) = A( I, I )
  190. SMIN = MIN( SMIN, S( I ) )
  191. AMAX = MAX( AMAX, S( I ) )
  192. 10 CONTINUE
  193. *
  194. IF( SMIN.LE.ZERO ) THEN
  195. *
  196. * Find the first non-positive diagonal element and return.
  197. *
  198. DO 20 I = 1, N
  199. IF( S( I ).LE.ZERO ) THEN
  200. INFO = I
  201. RETURN
  202. END IF
  203. 20 CONTINUE
  204. ELSE
  205. *
  206. * Set the scale factors to the reciprocals
  207. * of the diagonal elements.
  208. *
  209. DO 30 I = 1, N
  210. S( I ) = BASE ** INT( TMP * LOG( S( I ) ) )
  211. 30 CONTINUE
  212. *
  213. * Compute SCOND = min(S(I)) / max(S(I)).
  214. *
  215. SCOND = SQRT( SMIN ) / SQRT( AMAX )
  216. END IF
  217. *
  218. RETURN
  219. *
  220. * End of CPOEQUB
  221. *
  222. END