You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgesdd.f 90 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220
  1. *> \brief \b CGESDD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGESDD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesdd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesdd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesdd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
  22. * WORK, LWORK, RWORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ
  26. * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * REAL RWORK( * ), S( * )
  31. * COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
  32. * $ WORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> CGESDD computes the singular value decomposition (SVD) of a complex
  42. *> M-by-N matrix A, optionally computing the left and/or right singular
  43. *> vectors, by using divide-and-conquer method. The SVD is written
  44. *>
  45. *> A = U * SIGMA * conjugate-transpose(V)
  46. *>
  47. *> where SIGMA is an M-by-N matrix which is zero except for its
  48. *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
  49. *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA
  50. *> are the singular values of A; they are real and non-negative, and
  51. *> are returned in descending order. The first min(m,n) columns of
  52. *> U and V are the left and right singular vectors of A.
  53. *>
  54. *> Note that the routine returns VT = V**H, not V.
  55. *>
  56. *> The divide and conquer algorithm makes very mild assumptions about
  57. *> floating point arithmetic. It will work on machines with a guard
  58. *> digit in add/subtract, or on those binary machines without guard
  59. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  60. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  61. *> without guard digits, but we know of none.
  62. *> \endverbatim
  63. *
  64. * Arguments:
  65. * ==========
  66. *
  67. *> \param[in] JOBZ
  68. *> \verbatim
  69. *> JOBZ is CHARACTER*1
  70. *> Specifies options for computing all or part of the matrix U:
  71. *> = 'A': all M columns of U and all N rows of V**H are
  72. *> returned in the arrays U and VT;
  73. *> = 'S': the first min(M,N) columns of U and the first
  74. *> min(M,N) rows of V**H are returned in the arrays U
  75. *> and VT;
  76. *> = 'O': If M >= N, the first N columns of U are overwritten
  77. *> in the array A and all rows of V**H are returned in
  78. *> the array VT;
  79. *> otherwise, all columns of U are returned in the
  80. *> array U and the first M rows of V**H are overwritten
  81. *> in the array A;
  82. *> = 'N': no columns of U or rows of V**H are computed.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] M
  86. *> \verbatim
  87. *> M is INTEGER
  88. *> The number of rows of the input matrix A. M >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The number of columns of the input matrix A. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] A
  98. *> \verbatim
  99. *> A is COMPLEX array, dimension (LDA,N)
  100. *> On entry, the M-by-N matrix A.
  101. *> On exit,
  102. *> if JOBZ = 'O', A is overwritten with the first N columns
  103. *> of U (the left singular vectors, stored
  104. *> columnwise) if M >= N;
  105. *> A is overwritten with the first M rows
  106. *> of V**H (the right singular vectors, stored
  107. *> rowwise) otherwise.
  108. *> if JOBZ .ne. 'O', the contents of A are destroyed.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDA
  112. *> \verbatim
  113. *> LDA is INTEGER
  114. *> The leading dimension of the array A. LDA >= max(1,M).
  115. *> \endverbatim
  116. *>
  117. *> \param[out] S
  118. *> \verbatim
  119. *> S is REAL array, dimension (min(M,N))
  120. *> The singular values of A, sorted so that S(i) >= S(i+1).
  121. *> \endverbatim
  122. *>
  123. *> \param[out] U
  124. *> \verbatim
  125. *> U is COMPLEX array, dimension (LDU,UCOL)
  126. *> UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
  127. *> UCOL = min(M,N) if JOBZ = 'S'.
  128. *> If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
  129. *> unitary matrix U;
  130. *> if JOBZ = 'S', U contains the first min(M,N) columns of U
  131. *> (the left singular vectors, stored columnwise);
  132. *> if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDU
  136. *> \verbatim
  137. *> LDU is INTEGER
  138. *> The leading dimension of the array U. LDU >= 1;
  139. *> if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
  140. *> \endverbatim
  141. *>
  142. *> \param[out] VT
  143. *> \verbatim
  144. *> VT is COMPLEX array, dimension (LDVT,N)
  145. *> If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
  146. *> N-by-N unitary matrix V**H;
  147. *> if JOBZ = 'S', VT contains the first min(M,N) rows of
  148. *> V**H (the right singular vectors, stored rowwise);
  149. *> if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] LDVT
  153. *> \verbatim
  154. *> LDVT is INTEGER
  155. *> The leading dimension of the array VT. LDVT >= 1;
  156. *> if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
  157. *> if JOBZ = 'S', LDVT >= min(M,N).
  158. *> \endverbatim
  159. *>
  160. *> \param[out] WORK
  161. *> \verbatim
  162. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  163. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  164. *> \endverbatim
  165. *>
  166. *> \param[in] LWORK
  167. *> \verbatim
  168. *> LWORK is INTEGER
  169. *> The dimension of the array WORK. LWORK >= 1.
  170. *> If LWORK = -1, a workspace query is assumed. The optimal
  171. *> size for the WORK array is calculated and stored in WORK(1),
  172. *> and no other work except argument checking is performed.
  173. *>
  174. *> Let mx = max(M,N) and mn = min(M,N).
  175. *> If JOBZ = 'N', LWORK >= 2*mn + mx.
  176. *> If JOBZ = 'O', LWORK >= 2*mn*mn + 2*mn + mx.
  177. *> If JOBZ = 'S', LWORK >= mn*mn + 3*mn.
  178. *> If JOBZ = 'A', LWORK >= mn*mn + 2*mn + mx.
  179. *> These are not tight minimums in all cases; see comments inside code.
  180. *> For good performance, LWORK should generally be larger;
  181. *> a query is recommended.
  182. *> \endverbatim
  183. *>
  184. *> \param[out] RWORK
  185. *> \verbatim
  186. *> RWORK is REAL array, dimension (MAX(1,LRWORK))
  187. *> Let mx = max(M,N) and mn = min(M,N).
  188. *> If JOBZ = 'N', LRWORK >= 5*mn (LAPACK <= 3.6 needs 7*mn);
  189. *> else if mx >> mn, LRWORK >= 5*mn*mn + 5*mn;
  190. *> else LRWORK >= max( 5*mn*mn + 5*mn,
  191. *> 2*mx*mn + 2*mn*mn + mn ).
  192. *> \endverbatim
  193. *>
  194. *> \param[out] IWORK
  195. *> \verbatim
  196. *> IWORK is INTEGER array, dimension (8*min(M,N))
  197. *> \endverbatim
  198. *>
  199. *> \param[out] INFO
  200. *> \verbatim
  201. *> INFO is INTEGER
  202. *> = 0: successful exit.
  203. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  204. *> > 0: The updating process of SBDSDC did not converge.
  205. *> \endverbatim
  206. *
  207. * Authors:
  208. * ========
  209. *
  210. *> \author Univ. of Tennessee
  211. *> \author Univ. of California Berkeley
  212. *> \author Univ. of Colorado Denver
  213. *> \author NAG Ltd.
  214. *
  215. *> \date June 2016
  216. *
  217. *> \ingroup complexGEsing
  218. *
  219. *> \par Contributors:
  220. * ==================
  221. *>
  222. *> Ming Gu and Huan Ren, Computer Science Division, University of
  223. *> California at Berkeley, USA
  224. *>
  225. * =====================================================================
  226. SUBROUTINE CGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
  227. $ WORK, LWORK, RWORK, IWORK, INFO )
  228. implicit none
  229. *
  230. * -- LAPACK driver routine (version 3.7.0) --
  231. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  232. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  233. * June 2016
  234. *
  235. * .. Scalar Arguments ..
  236. CHARACTER JOBZ
  237. INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  238. * ..
  239. * .. Array Arguments ..
  240. INTEGER IWORK( * )
  241. REAL RWORK( * ), S( * )
  242. COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
  243. $ WORK( * )
  244. * ..
  245. *
  246. * =====================================================================
  247. *
  248. * .. Parameters ..
  249. COMPLEX CZERO, CONE
  250. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  251. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  252. REAL ZERO, ONE
  253. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  254. * ..
  255. * .. Local Scalars ..
  256. LOGICAL LQUERY, WNTQA, WNTQAS, WNTQN, WNTQO, WNTQS
  257. INTEGER BLK, CHUNK, I, IE, IERR, IL, IR, IRU, IRVT,
  258. $ ISCL, ITAU, ITAUP, ITAUQ, IU, IVT, LDWKVT,
  259. $ LDWRKL, LDWRKR, LDWRKU, MAXWRK, MINMN, MINWRK,
  260. $ MNTHR1, MNTHR2, NRWORK, NWORK, WRKBL
  261. INTEGER LWORK_CGEBRD_MN, LWORK_CGEBRD_MM,
  262. $ LWORK_CGEBRD_NN, LWORK_CGELQF_MN,
  263. $ LWORK_CGEQRF_MN,
  264. $ LWORK_CUNGBR_P_MN, LWORK_CUNGBR_P_NN,
  265. $ LWORK_CUNGBR_Q_MN, LWORK_CUNGBR_Q_MM,
  266. $ LWORK_CUNGLQ_MN, LWORK_CUNGLQ_NN,
  267. $ LWORK_CUNGQR_MM, LWORK_CUNGQR_MN,
  268. $ LWORK_CUNMBR_PRC_MM, LWORK_CUNMBR_QLN_MM,
  269. $ LWORK_CUNMBR_PRC_MN, LWORK_CUNMBR_QLN_MN,
  270. $ LWORK_CUNMBR_PRC_NN, LWORK_CUNMBR_QLN_NN
  271. REAL ANRM, BIGNUM, EPS, SMLNUM
  272. * ..
  273. * .. Local Arrays ..
  274. INTEGER IDUM( 1 )
  275. REAL DUM( 1 )
  276. COMPLEX CDUM( 1 )
  277. * ..
  278. * .. External Subroutines ..
  279. EXTERNAL CGEBRD, CGELQF, CGEMM, CGEQRF, CLACP2, CLACPY,
  280. $ CLACRM, CLARCM, CLASCL, CLASET, CUNGBR, CUNGLQ,
  281. $ CUNGQR, CUNMBR, SBDSDC, SLASCL, XERBLA
  282. * ..
  283. * .. External Functions ..
  284. LOGICAL LSAME
  285. REAL SLAMCH, CLANGE
  286. EXTERNAL LSAME, SLAMCH, CLANGE
  287. * ..
  288. * .. Intrinsic Functions ..
  289. INTRINSIC INT, MAX, MIN, SQRT
  290. * ..
  291. * .. Executable Statements ..
  292. *
  293. * Test the input arguments
  294. *
  295. INFO = 0
  296. MINMN = MIN( M, N )
  297. MNTHR1 = INT( MINMN*17.0E0 / 9.0E0 )
  298. MNTHR2 = INT( MINMN*5.0E0 / 3.0E0 )
  299. WNTQA = LSAME( JOBZ, 'A' )
  300. WNTQS = LSAME( JOBZ, 'S' )
  301. WNTQAS = WNTQA .OR. WNTQS
  302. WNTQO = LSAME( JOBZ, 'O' )
  303. WNTQN = LSAME( JOBZ, 'N' )
  304. LQUERY = ( LWORK.EQ.-1 )
  305. MINWRK = 1
  306. MAXWRK = 1
  307. *
  308. IF( .NOT.( WNTQA .OR. WNTQS .OR. WNTQO .OR. WNTQN ) ) THEN
  309. INFO = -1
  310. ELSE IF( M.LT.0 ) THEN
  311. INFO = -2
  312. ELSE IF( N.LT.0 ) THEN
  313. INFO = -3
  314. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  315. INFO = -5
  316. ELSE IF( LDU.LT.1 .OR. ( WNTQAS .AND. LDU.LT.M ) .OR.
  317. $ ( WNTQO .AND. M.LT.N .AND. LDU.LT.M ) ) THEN
  318. INFO = -8
  319. ELSE IF( LDVT.LT.1 .OR. ( WNTQA .AND. LDVT.LT.N ) .OR.
  320. $ ( WNTQS .AND. LDVT.LT.MINMN ) .OR.
  321. $ ( WNTQO .AND. M.GE.N .AND. LDVT.LT.N ) ) THEN
  322. INFO = -10
  323. END IF
  324. *
  325. * Compute workspace
  326. * Note: Comments in the code beginning "Workspace:" describe the
  327. * minimal amount of workspace allocated at that point in the code,
  328. * as well as the preferred amount for good performance.
  329. * CWorkspace refers to complex workspace, and RWorkspace to
  330. * real workspace. NB refers to the optimal block size for the
  331. * immediately following subroutine, as returned by ILAENV.)
  332. *
  333. IF( INFO.EQ.0 ) THEN
  334. MINWRK = 1
  335. MAXWRK = 1
  336. IF( M.GE.N .AND. MINMN.GT.0 ) THEN
  337. *
  338. * There is no complex work space needed for bidiagonal SVD
  339. * The real work space needed for bidiagonal SVD (sbdsdc) is
  340. * BDSPAC = 3*N*N + 4*N for singular values and vectors;
  341. * BDSPAC = 4*N for singular values only;
  342. * not including e, RU, and RVT matrices.
  343. *
  344. * Compute space preferred for each routine
  345. CALL CGEBRD( M, N, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
  346. $ CDUM(1), CDUM(1), -1, IERR )
  347. LWORK_CGEBRD_MN = INT( CDUM(1) )
  348. *
  349. CALL CGEBRD( N, N, CDUM(1), N, DUM(1), DUM(1), CDUM(1),
  350. $ CDUM(1), CDUM(1), -1, IERR )
  351. LWORK_CGEBRD_NN = INT( CDUM(1) )
  352. *
  353. CALL CGEQRF( M, N, CDUM(1), M, CDUM(1), CDUM(1), -1, IERR )
  354. LWORK_CGEQRF_MN = INT( CDUM(1) )
  355. *
  356. CALL CUNGBR( 'P', N, N, N, CDUM(1), N, CDUM(1), CDUM(1),
  357. $ -1, IERR )
  358. LWORK_CUNGBR_P_NN = INT( CDUM(1) )
  359. *
  360. CALL CUNGBR( 'Q', M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
  361. $ -1, IERR )
  362. LWORK_CUNGBR_Q_MM = INT( CDUM(1) )
  363. *
  364. CALL CUNGBR( 'Q', M, N, N, CDUM(1), M, CDUM(1), CDUM(1),
  365. $ -1, IERR )
  366. LWORK_CUNGBR_Q_MN = INT( CDUM(1) )
  367. *
  368. CALL CUNGQR( M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
  369. $ -1, IERR )
  370. LWORK_CUNGQR_MM = INT( CDUM(1) )
  371. *
  372. CALL CUNGQR( M, N, N, CDUM(1), M, CDUM(1), CDUM(1),
  373. $ -1, IERR )
  374. LWORK_CUNGQR_MN = INT( CDUM(1) )
  375. *
  376. CALL CUNMBR( 'P', 'R', 'C', N, N, N, CDUM(1), N, CDUM(1),
  377. $ CDUM(1), N, CDUM(1), -1, IERR )
  378. LWORK_CUNMBR_PRC_NN = INT( CDUM(1) )
  379. *
  380. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, CDUM(1), M, CDUM(1),
  381. $ CDUM(1), M, CDUM(1), -1, IERR )
  382. LWORK_CUNMBR_QLN_MM = INT( CDUM(1) )
  383. *
  384. CALL CUNMBR( 'Q', 'L', 'N', M, N, N, CDUM(1), M, CDUM(1),
  385. $ CDUM(1), M, CDUM(1), -1, IERR )
  386. LWORK_CUNMBR_QLN_MN = INT( CDUM(1) )
  387. *
  388. CALL CUNMBR( 'Q', 'L', 'N', N, N, N, CDUM(1), N, CDUM(1),
  389. $ CDUM(1), N, CDUM(1), -1, IERR )
  390. LWORK_CUNMBR_QLN_NN = INT( CDUM(1) )
  391. *
  392. IF( M.GE.MNTHR1 ) THEN
  393. IF( WNTQN ) THEN
  394. *
  395. * Path 1 (M >> N, JOBZ='N')
  396. *
  397. MAXWRK = N + LWORK_CGEQRF_MN
  398. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CGEBRD_NN )
  399. MINWRK = 3*N
  400. ELSE IF( WNTQO ) THEN
  401. *
  402. * Path 2 (M >> N, JOBZ='O')
  403. *
  404. WRKBL = N + LWORK_CGEQRF_MN
  405. WRKBL = MAX( WRKBL, N + LWORK_CUNGQR_MN )
  406. WRKBL = MAX( WRKBL, 2*N + LWORK_CGEBRD_NN )
  407. WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_QLN_NN )
  408. WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_PRC_NN )
  409. MAXWRK = M*N + N*N + WRKBL
  410. MINWRK = 2*N*N + 3*N
  411. ELSE IF( WNTQS ) THEN
  412. *
  413. * Path 3 (M >> N, JOBZ='S')
  414. *
  415. WRKBL = N + LWORK_CGEQRF_MN
  416. WRKBL = MAX( WRKBL, N + LWORK_CUNGQR_MN )
  417. WRKBL = MAX( WRKBL, 2*N + LWORK_CGEBRD_NN )
  418. WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_QLN_NN )
  419. WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_PRC_NN )
  420. MAXWRK = N*N + WRKBL
  421. MINWRK = N*N + 3*N
  422. ELSE IF( WNTQA ) THEN
  423. *
  424. * Path 4 (M >> N, JOBZ='A')
  425. *
  426. WRKBL = N + LWORK_CGEQRF_MN
  427. WRKBL = MAX( WRKBL, N + LWORK_CUNGQR_MM )
  428. WRKBL = MAX( WRKBL, 2*N + LWORK_CGEBRD_NN )
  429. WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_QLN_NN )
  430. WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_PRC_NN )
  431. MAXWRK = N*N + WRKBL
  432. MINWRK = N*N + MAX( 3*N, N + M )
  433. END IF
  434. ELSE IF( M.GE.MNTHR2 ) THEN
  435. *
  436. * Path 5 (M >> N, but not as much as MNTHR1)
  437. *
  438. MAXWRK = 2*N + LWORK_CGEBRD_MN
  439. MINWRK = 2*N + M
  440. IF( WNTQO ) THEN
  441. * Path 5o (M >> N, JOBZ='O')
  442. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_P_NN )
  443. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_Q_MN )
  444. MAXWRK = MAXWRK + M*N
  445. MINWRK = MINWRK + N*N
  446. ELSE IF( WNTQS ) THEN
  447. * Path 5s (M >> N, JOBZ='S')
  448. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_P_NN )
  449. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_Q_MN )
  450. ELSE IF( WNTQA ) THEN
  451. * Path 5a (M >> N, JOBZ='A')
  452. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_P_NN )
  453. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_Q_MM )
  454. END IF
  455. ELSE
  456. *
  457. * Path 6 (M >= N, but not much larger)
  458. *
  459. MAXWRK = 2*N + LWORK_CGEBRD_MN
  460. MINWRK = 2*N + M
  461. IF( WNTQO ) THEN
  462. * Path 6o (M >= N, JOBZ='O')
  463. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_PRC_NN )
  464. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_QLN_MN )
  465. MAXWRK = MAXWRK + M*N
  466. MINWRK = MINWRK + N*N
  467. ELSE IF( WNTQS ) THEN
  468. * Path 6s (M >= N, JOBZ='S')
  469. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_QLN_MN )
  470. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_PRC_NN )
  471. ELSE IF( WNTQA ) THEN
  472. * Path 6a (M >= N, JOBZ='A')
  473. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_QLN_MM )
  474. MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_PRC_NN )
  475. END IF
  476. END IF
  477. ELSE IF( MINMN.GT.0 ) THEN
  478. *
  479. * There is no complex work space needed for bidiagonal SVD
  480. * The real work space needed for bidiagonal SVD (sbdsdc) is
  481. * BDSPAC = 3*M*M + 4*M for singular values and vectors;
  482. * BDSPAC = 4*M for singular values only;
  483. * not including e, RU, and RVT matrices.
  484. *
  485. * Compute space preferred for each routine
  486. CALL CGEBRD( M, N, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
  487. $ CDUM(1), CDUM(1), -1, IERR )
  488. LWORK_CGEBRD_MN = INT( CDUM(1) )
  489. *
  490. CALL CGEBRD( M, M, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
  491. $ CDUM(1), CDUM(1), -1, IERR )
  492. LWORK_CGEBRD_MM = INT( CDUM(1) )
  493. *
  494. CALL CGELQF( M, N, CDUM(1), M, CDUM(1), CDUM(1), -1, IERR )
  495. LWORK_CGELQF_MN = INT( CDUM(1) )
  496. *
  497. CALL CUNGBR( 'P', M, N, M, CDUM(1), M, CDUM(1), CDUM(1),
  498. $ -1, IERR )
  499. LWORK_CUNGBR_P_MN = INT( CDUM(1) )
  500. *
  501. CALL CUNGBR( 'P', N, N, M, CDUM(1), N, CDUM(1), CDUM(1),
  502. $ -1, IERR )
  503. LWORK_CUNGBR_P_NN = INT( CDUM(1) )
  504. *
  505. CALL CUNGBR( 'Q', M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
  506. $ -1, IERR )
  507. LWORK_CUNGBR_Q_MM = INT( CDUM(1) )
  508. *
  509. CALL CUNGLQ( M, N, M, CDUM(1), M, CDUM(1), CDUM(1),
  510. $ -1, IERR )
  511. LWORK_CUNGLQ_MN = INT( CDUM(1) )
  512. *
  513. CALL CUNGLQ( N, N, M, CDUM(1), N, CDUM(1), CDUM(1),
  514. $ -1, IERR )
  515. LWORK_CUNGLQ_NN = INT( CDUM(1) )
  516. *
  517. CALL CUNMBR( 'P', 'R', 'C', M, M, M, CDUM(1), M, CDUM(1),
  518. $ CDUM(1), M, CDUM(1), -1, IERR )
  519. LWORK_CUNMBR_PRC_MM = INT( CDUM(1) )
  520. *
  521. CALL CUNMBR( 'P', 'R', 'C', M, N, M, CDUM(1), M, CDUM(1),
  522. $ CDUM(1), M, CDUM(1), -1, IERR )
  523. LWORK_CUNMBR_PRC_MN = INT( CDUM(1) )
  524. *
  525. CALL CUNMBR( 'P', 'R', 'C', N, N, M, CDUM(1), N, CDUM(1),
  526. $ CDUM(1), N, CDUM(1), -1, IERR )
  527. LWORK_CUNMBR_PRC_NN = INT( CDUM(1) )
  528. *
  529. CALL CUNMBR( 'Q', 'L', 'N', M, M, M, CDUM(1), M, CDUM(1),
  530. $ CDUM(1), M, CDUM(1), -1, IERR )
  531. LWORK_CUNMBR_QLN_MM = INT( CDUM(1) )
  532. *
  533. IF( N.GE.MNTHR1 ) THEN
  534. IF( WNTQN ) THEN
  535. *
  536. * Path 1t (N >> M, JOBZ='N')
  537. *
  538. MAXWRK = M + LWORK_CGELQF_MN
  539. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CGEBRD_MM )
  540. MINWRK = 3*M
  541. ELSE IF( WNTQO ) THEN
  542. *
  543. * Path 2t (N >> M, JOBZ='O')
  544. *
  545. WRKBL = M + LWORK_CGELQF_MN
  546. WRKBL = MAX( WRKBL, M + LWORK_CUNGLQ_MN )
  547. WRKBL = MAX( WRKBL, 2*M + LWORK_CGEBRD_MM )
  548. WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_QLN_MM )
  549. WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_PRC_MM )
  550. MAXWRK = M*N + M*M + WRKBL
  551. MINWRK = 2*M*M + 3*M
  552. ELSE IF( WNTQS ) THEN
  553. *
  554. * Path 3t (N >> M, JOBZ='S')
  555. *
  556. WRKBL = M + LWORK_CGELQF_MN
  557. WRKBL = MAX( WRKBL, M + LWORK_CUNGLQ_MN )
  558. WRKBL = MAX( WRKBL, 2*M + LWORK_CGEBRD_MM )
  559. WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_QLN_MM )
  560. WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_PRC_MM )
  561. MAXWRK = M*M + WRKBL
  562. MINWRK = M*M + 3*M
  563. ELSE IF( WNTQA ) THEN
  564. *
  565. * Path 4t (N >> M, JOBZ='A')
  566. *
  567. WRKBL = M + LWORK_CGELQF_MN
  568. WRKBL = MAX( WRKBL, M + LWORK_CUNGLQ_NN )
  569. WRKBL = MAX( WRKBL, 2*M + LWORK_CGEBRD_MM )
  570. WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_QLN_MM )
  571. WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_PRC_MM )
  572. MAXWRK = M*M + WRKBL
  573. MINWRK = M*M + MAX( 3*M, M + N )
  574. END IF
  575. ELSE IF( N.GE.MNTHR2 ) THEN
  576. *
  577. * Path 5t (N >> M, but not as much as MNTHR1)
  578. *
  579. MAXWRK = 2*M + LWORK_CGEBRD_MN
  580. MINWRK = 2*M + N
  581. IF( WNTQO ) THEN
  582. * Path 5to (N >> M, JOBZ='O')
  583. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_Q_MM )
  584. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_P_MN )
  585. MAXWRK = MAXWRK + M*N
  586. MINWRK = MINWRK + M*M
  587. ELSE IF( WNTQS ) THEN
  588. * Path 5ts (N >> M, JOBZ='S')
  589. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_Q_MM )
  590. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_P_MN )
  591. ELSE IF( WNTQA ) THEN
  592. * Path 5ta (N >> M, JOBZ='A')
  593. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_Q_MM )
  594. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_P_NN )
  595. END IF
  596. ELSE
  597. *
  598. * Path 6t (N > M, but not much larger)
  599. *
  600. MAXWRK = 2*M + LWORK_CGEBRD_MN
  601. MINWRK = 2*M + N
  602. IF( WNTQO ) THEN
  603. * Path 6to (N > M, JOBZ='O')
  604. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_QLN_MM )
  605. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_PRC_MN )
  606. MAXWRK = MAXWRK + M*N
  607. MINWRK = MINWRK + M*M
  608. ELSE IF( WNTQS ) THEN
  609. * Path 6ts (N > M, JOBZ='S')
  610. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_QLN_MM )
  611. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_PRC_MN )
  612. ELSE IF( WNTQA ) THEN
  613. * Path 6ta (N > M, JOBZ='A')
  614. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_QLN_MM )
  615. MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_PRC_NN )
  616. END IF
  617. END IF
  618. END IF
  619. MAXWRK = MAX( MAXWRK, MINWRK )
  620. END IF
  621. IF( INFO.EQ.0 ) THEN
  622. WORK( 1 ) = MAXWRK
  623. IF( LWORK.LT.MINWRK .AND. .NOT. LQUERY ) THEN
  624. INFO = -12
  625. END IF
  626. END IF
  627. *
  628. IF( INFO.NE.0 ) THEN
  629. CALL XERBLA( 'CGESDD', -INFO )
  630. RETURN
  631. ELSE IF( LQUERY ) THEN
  632. RETURN
  633. END IF
  634. *
  635. * Quick return if possible
  636. *
  637. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  638. RETURN
  639. END IF
  640. *
  641. * Get machine constants
  642. *
  643. EPS = SLAMCH( 'P' )
  644. SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
  645. BIGNUM = ONE / SMLNUM
  646. *
  647. * Scale A if max element outside range [SMLNUM,BIGNUM]
  648. *
  649. ANRM = CLANGE( 'M', M, N, A, LDA, DUM )
  650. ISCL = 0
  651. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  652. ISCL = 1
  653. CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
  654. ELSE IF( ANRM.GT.BIGNUM ) THEN
  655. ISCL = 1
  656. CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
  657. END IF
  658. *
  659. IF( M.GE.N ) THEN
  660. *
  661. * A has at least as many rows as columns. If A has sufficiently
  662. * more rows than columns, first reduce using the QR
  663. * decomposition (if sufficient workspace available)
  664. *
  665. IF( M.GE.MNTHR1 ) THEN
  666. *
  667. IF( WNTQN ) THEN
  668. *
  669. * Path 1 (M >> N, JOBZ='N')
  670. * No singular vectors to be computed
  671. *
  672. ITAU = 1
  673. NWORK = ITAU + N
  674. *
  675. * Compute A=Q*R
  676. * CWorkspace: need N [tau] + N [work]
  677. * CWorkspace: prefer N [tau] + N*NB [work]
  678. * RWorkspace: need 0
  679. *
  680. CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  681. $ LWORK-NWORK+1, IERR )
  682. *
  683. * Zero out below R
  684. *
  685. CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  686. $ LDA )
  687. IE = 1
  688. ITAUQ = 1
  689. ITAUP = ITAUQ + N
  690. NWORK = ITAUP + N
  691. *
  692. * Bidiagonalize R in A
  693. * CWorkspace: need 2*N [tauq, taup] + N [work]
  694. * CWorkspace: prefer 2*N [tauq, taup] + 2*N*NB [work]
  695. * RWorkspace: need N [e]
  696. *
  697. CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  698. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  699. $ IERR )
  700. NRWORK = IE + N
  701. *
  702. * Perform bidiagonal SVD, compute singular values only
  703. * CWorkspace: need 0
  704. * RWorkspace: need N [e] + BDSPAC
  705. *
  706. CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM,1,DUM,1,
  707. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  708. *
  709. ELSE IF( WNTQO ) THEN
  710. *
  711. * Path 2 (M >> N, JOBZ='O')
  712. * N left singular vectors to be overwritten on A and
  713. * N right singular vectors to be computed in VT
  714. *
  715. IU = 1
  716. *
  717. * WORK(IU) is N by N
  718. *
  719. LDWRKU = N
  720. IR = IU + LDWRKU*N
  721. IF( LWORK .GE. M*N + N*N + 3*N ) THEN
  722. *
  723. * WORK(IR) is M by N
  724. *
  725. LDWRKR = M
  726. ELSE
  727. LDWRKR = ( LWORK - N*N - 3*N ) / N
  728. END IF
  729. ITAU = IR + LDWRKR*N
  730. NWORK = ITAU + N
  731. *
  732. * Compute A=Q*R
  733. * CWorkspace: need N*N [U] + N*N [R] + N [tau] + N [work]
  734. * CWorkspace: prefer N*N [U] + N*N [R] + N [tau] + N*NB [work]
  735. * RWorkspace: need 0
  736. *
  737. CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  738. $ LWORK-NWORK+1, IERR )
  739. *
  740. * Copy R to WORK( IR ), zeroing out below it
  741. *
  742. CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
  743. CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, WORK( IR+1 ),
  744. $ LDWRKR )
  745. *
  746. * Generate Q in A
  747. * CWorkspace: need N*N [U] + N*N [R] + N [tau] + N [work]
  748. * CWorkspace: prefer N*N [U] + N*N [R] + N [tau] + N*NB [work]
  749. * RWorkspace: need 0
  750. *
  751. CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  752. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  753. IE = 1
  754. ITAUQ = ITAU
  755. ITAUP = ITAUQ + N
  756. NWORK = ITAUP + N
  757. *
  758. * Bidiagonalize R in WORK(IR)
  759. * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
  760. * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + 2*N*NB [work]
  761. * RWorkspace: need N [e]
  762. *
  763. CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
  764. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  765. $ LWORK-NWORK+1, IERR )
  766. *
  767. * Perform bidiagonal SVD, computing left singular vectors
  768. * of R in WORK(IRU) and computing right singular vectors
  769. * of R in WORK(IRVT)
  770. * CWorkspace: need 0
  771. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  772. *
  773. IRU = IE + N
  774. IRVT = IRU + N*N
  775. NRWORK = IRVT + N*N
  776. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  777. $ N, RWORK( IRVT ), N, DUM, IDUM,
  778. $ RWORK( NRWORK ), IWORK, INFO )
  779. *
  780. * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
  781. * Overwrite WORK(IU) by the left singular vectors of R
  782. * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
  783. * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + N*NB [work]
  784. * RWorkspace: need 0
  785. *
  786. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
  787. $ LDWRKU )
  788. CALL CUNMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
  789. $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
  790. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  791. *
  792. * Copy real matrix RWORK(IRVT) to complex matrix VT
  793. * Overwrite VT by the right singular vectors of R
  794. * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
  795. * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + N*NB [work]
  796. * RWorkspace: need 0
  797. *
  798. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  799. CALL CUNMBR( 'P', 'R', 'C', N, N, N, WORK( IR ), LDWRKR,
  800. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  801. $ LWORK-NWORK+1, IERR )
  802. *
  803. * Multiply Q in A by left singular vectors of R in
  804. * WORK(IU), storing result in WORK(IR) and copying to A
  805. * CWorkspace: need N*N [U] + N*N [R]
  806. * CWorkspace: prefer N*N [U] + M*N [R]
  807. * RWorkspace: need 0
  808. *
  809. DO 10 I = 1, M, LDWRKR
  810. CHUNK = MIN( M-I+1, LDWRKR )
  811. CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
  812. $ LDA, WORK( IU ), LDWRKU, CZERO,
  813. $ WORK( IR ), LDWRKR )
  814. CALL CLACPY( 'F', CHUNK, N, WORK( IR ), LDWRKR,
  815. $ A( I, 1 ), LDA )
  816. 10 CONTINUE
  817. *
  818. ELSE IF( WNTQS ) THEN
  819. *
  820. * Path 3 (M >> N, JOBZ='S')
  821. * N left singular vectors to be computed in U and
  822. * N right singular vectors to be computed in VT
  823. *
  824. IR = 1
  825. *
  826. * WORK(IR) is N by N
  827. *
  828. LDWRKR = N
  829. ITAU = IR + LDWRKR*N
  830. NWORK = ITAU + N
  831. *
  832. * Compute A=Q*R
  833. * CWorkspace: need N*N [R] + N [tau] + N [work]
  834. * CWorkspace: prefer N*N [R] + N [tau] + N*NB [work]
  835. * RWorkspace: need 0
  836. *
  837. CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  838. $ LWORK-NWORK+1, IERR )
  839. *
  840. * Copy R to WORK(IR), zeroing out below it
  841. *
  842. CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
  843. CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, WORK( IR+1 ),
  844. $ LDWRKR )
  845. *
  846. * Generate Q in A
  847. * CWorkspace: need N*N [R] + N [tau] + N [work]
  848. * CWorkspace: prefer N*N [R] + N [tau] + N*NB [work]
  849. * RWorkspace: need 0
  850. *
  851. CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  852. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  853. IE = 1
  854. ITAUQ = ITAU
  855. ITAUP = ITAUQ + N
  856. NWORK = ITAUP + N
  857. *
  858. * Bidiagonalize R in WORK(IR)
  859. * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
  860. * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + 2*N*NB [work]
  861. * RWorkspace: need N [e]
  862. *
  863. CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
  864. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  865. $ LWORK-NWORK+1, IERR )
  866. *
  867. * Perform bidiagonal SVD, computing left singular vectors
  868. * of bidiagonal matrix in RWORK(IRU) and computing right
  869. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  870. * CWorkspace: need 0
  871. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  872. *
  873. IRU = IE + N
  874. IRVT = IRU + N*N
  875. NRWORK = IRVT + N*N
  876. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  877. $ N, RWORK( IRVT ), N, DUM, IDUM,
  878. $ RWORK( NRWORK ), IWORK, INFO )
  879. *
  880. * Copy real matrix RWORK(IRU) to complex matrix U
  881. * Overwrite U by left singular vectors of R
  882. * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
  883. * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + N*NB [work]
  884. * RWorkspace: need 0
  885. *
  886. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
  887. CALL CUNMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
  888. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  889. $ LWORK-NWORK+1, IERR )
  890. *
  891. * Copy real matrix RWORK(IRVT) to complex matrix VT
  892. * Overwrite VT by right singular vectors of R
  893. * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
  894. * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + N*NB [work]
  895. * RWorkspace: need 0
  896. *
  897. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  898. CALL CUNMBR( 'P', 'R', 'C', N, N, N, WORK( IR ), LDWRKR,
  899. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  900. $ LWORK-NWORK+1, IERR )
  901. *
  902. * Multiply Q in A by left singular vectors of R in
  903. * WORK(IR), storing result in U
  904. * CWorkspace: need N*N [R]
  905. * RWorkspace: need 0
  906. *
  907. CALL CLACPY( 'F', N, N, U, LDU, WORK( IR ), LDWRKR )
  908. CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA, WORK( IR ),
  909. $ LDWRKR, CZERO, U, LDU )
  910. *
  911. ELSE IF( WNTQA ) THEN
  912. *
  913. * Path 4 (M >> N, JOBZ='A')
  914. * M left singular vectors to be computed in U and
  915. * N right singular vectors to be computed in VT
  916. *
  917. IU = 1
  918. *
  919. * WORK(IU) is N by N
  920. *
  921. LDWRKU = N
  922. ITAU = IU + LDWRKU*N
  923. NWORK = ITAU + N
  924. *
  925. * Compute A=Q*R, copying result to U
  926. * CWorkspace: need N*N [U] + N [tau] + N [work]
  927. * CWorkspace: prefer N*N [U] + N [tau] + N*NB [work]
  928. * RWorkspace: need 0
  929. *
  930. CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  931. $ LWORK-NWORK+1, IERR )
  932. CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
  933. *
  934. * Generate Q in U
  935. * CWorkspace: need N*N [U] + N [tau] + M [work]
  936. * CWorkspace: prefer N*N [U] + N [tau] + M*NB [work]
  937. * RWorkspace: need 0
  938. *
  939. CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
  940. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  941. *
  942. * Produce R in A, zeroing out below it
  943. *
  944. CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  945. $ LDA )
  946. IE = 1
  947. ITAUQ = ITAU
  948. ITAUP = ITAUQ + N
  949. NWORK = ITAUP + N
  950. *
  951. * Bidiagonalize R in A
  952. * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
  953. * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + 2*N*NB [work]
  954. * RWorkspace: need N [e]
  955. *
  956. CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  957. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  958. $ IERR )
  959. IRU = IE + N
  960. IRVT = IRU + N*N
  961. NRWORK = IRVT + N*N
  962. *
  963. * Perform bidiagonal SVD, computing left singular vectors
  964. * of bidiagonal matrix in RWORK(IRU) and computing right
  965. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  966. * CWorkspace: need 0
  967. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  968. *
  969. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  970. $ N, RWORK( IRVT ), N, DUM, IDUM,
  971. $ RWORK( NRWORK ), IWORK, INFO )
  972. *
  973. * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
  974. * Overwrite WORK(IU) by left singular vectors of R
  975. * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
  976. * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + N*NB [work]
  977. * RWorkspace: need 0
  978. *
  979. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
  980. $ LDWRKU )
  981. CALL CUNMBR( 'Q', 'L', 'N', N, N, N, A, LDA,
  982. $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
  983. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  984. *
  985. * Copy real matrix RWORK(IRVT) to complex matrix VT
  986. * Overwrite VT by right singular vectors of R
  987. * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
  988. * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + N*NB [work]
  989. * RWorkspace: need 0
  990. *
  991. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  992. CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
  993. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  994. $ LWORK-NWORK+1, IERR )
  995. *
  996. * Multiply Q in U by left singular vectors of R in
  997. * WORK(IU), storing result in A
  998. * CWorkspace: need N*N [U]
  999. * RWorkspace: need 0
  1000. *
  1001. CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU, WORK( IU ),
  1002. $ LDWRKU, CZERO, A, LDA )
  1003. *
  1004. * Copy left singular vectors of A from A to U
  1005. *
  1006. CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
  1007. *
  1008. END IF
  1009. *
  1010. ELSE IF( M.GE.MNTHR2 ) THEN
  1011. *
  1012. * MNTHR2 <= M < MNTHR1
  1013. *
  1014. * Path 5 (M >> N, but not as much as MNTHR1)
  1015. * Reduce to bidiagonal form without QR decomposition, use
  1016. * CUNGBR and matrix multiplication to compute singular vectors
  1017. *
  1018. IE = 1
  1019. NRWORK = IE + N
  1020. ITAUQ = 1
  1021. ITAUP = ITAUQ + N
  1022. NWORK = ITAUP + N
  1023. *
  1024. * Bidiagonalize A
  1025. * CWorkspace: need 2*N [tauq, taup] + M [work]
  1026. * CWorkspace: prefer 2*N [tauq, taup] + (M+N)*NB [work]
  1027. * RWorkspace: need N [e]
  1028. *
  1029. CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1030. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1031. $ IERR )
  1032. IF( WNTQN ) THEN
  1033. *
  1034. * Path 5n (M >> N, JOBZ='N')
  1035. * Compute singular values only
  1036. * CWorkspace: need 0
  1037. * RWorkspace: need N [e] + BDSPAC
  1038. *
  1039. CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM, 1,DUM,1,
  1040. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  1041. ELSE IF( WNTQO ) THEN
  1042. IU = NWORK
  1043. IRU = NRWORK
  1044. IRVT = IRU + N*N
  1045. NRWORK = IRVT + N*N
  1046. *
  1047. * Path 5o (M >> N, JOBZ='O')
  1048. * Copy A to VT, generate P**H
  1049. * CWorkspace: need 2*N [tauq, taup] + N [work]
  1050. * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
  1051. * RWorkspace: need 0
  1052. *
  1053. CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1054. CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1055. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1056. *
  1057. * Generate Q in A
  1058. * CWorkspace: need 2*N [tauq, taup] + N [work]
  1059. * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
  1060. * RWorkspace: need 0
  1061. *
  1062. CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  1063. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1064. *
  1065. IF( LWORK .GE. M*N + 3*N ) THEN
  1066. *
  1067. * WORK( IU ) is M by N
  1068. *
  1069. LDWRKU = M
  1070. ELSE
  1071. *
  1072. * WORK(IU) is LDWRKU by N
  1073. *
  1074. LDWRKU = ( LWORK - 3*N ) / N
  1075. END IF
  1076. NWORK = IU + LDWRKU*N
  1077. *
  1078. * Perform bidiagonal SVD, computing left singular vectors
  1079. * of bidiagonal matrix in RWORK(IRU) and computing right
  1080. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1081. * CWorkspace: need 0
  1082. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  1083. *
  1084. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1085. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1086. $ RWORK( NRWORK ), IWORK, INFO )
  1087. *
  1088. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1089. * storing the result in WORK(IU), copying to VT
  1090. * CWorkspace: need 2*N [tauq, taup] + N*N [U]
  1091. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
  1092. *
  1093. CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT,
  1094. $ WORK( IU ), LDWRKU, RWORK( NRWORK ) )
  1095. CALL CLACPY( 'F', N, N, WORK( IU ), LDWRKU, VT, LDVT )
  1096. *
  1097. * Multiply Q in A by real matrix RWORK(IRU), storing the
  1098. * result in WORK(IU), copying to A
  1099. * CWorkspace: need 2*N [tauq, taup] + N*N [U]
  1100. * CWorkspace: prefer 2*N [tauq, taup] + M*N [U]
  1101. * RWorkspace: need N [e] + N*N [RU] + 2*N*N [rwork]
  1102. * RWorkspace: prefer N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
  1103. *
  1104. NRWORK = IRVT
  1105. DO 20 I = 1, M, LDWRKU
  1106. CHUNK = MIN( M-I+1, LDWRKU )
  1107. CALL CLACRM( CHUNK, N, A( I, 1 ), LDA, RWORK( IRU ),
  1108. $ N, WORK( IU ), LDWRKU, RWORK( NRWORK ) )
  1109. CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  1110. $ A( I, 1 ), LDA )
  1111. 20 CONTINUE
  1112. *
  1113. ELSE IF( WNTQS ) THEN
  1114. *
  1115. * Path 5s (M >> N, JOBZ='S')
  1116. * Copy A to VT, generate P**H
  1117. * CWorkspace: need 2*N [tauq, taup] + N [work]
  1118. * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
  1119. * RWorkspace: need 0
  1120. *
  1121. CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1122. CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1123. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1124. *
  1125. * Copy A to U, generate Q
  1126. * CWorkspace: need 2*N [tauq, taup] + N [work]
  1127. * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
  1128. * RWorkspace: need 0
  1129. *
  1130. CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
  1131. CALL CUNGBR( 'Q', M, N, N, U, LDU, WORK( ITAUQ ),
  1132. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1133. *
  1134. * Perform bidiagonal SVD, computing left singular vectors
  1135. * of bidiagonal matrix in RWORK(IRU) and computing right
  1136. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1137. * CWorkspace: need 0
  1138. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  1139. *
  1140. IRU = NRWORK
  1141. IRVT = IRU + N*N
  1142. NRWORK = IRVT + N*N
  1143. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1144. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1145. $ RWORK( NRWORK ), IWORK, INFO )
  1146. *
  1147. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1148. * storing the result in A, copying to VT
  1149. * CWorkspace: need 0
  1150. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
  1151. *
  1152. CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT, A, LDA,
  1153. $ RWORK( NRWORK ) )
  1154. CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT )
  1155. *
  1156. * Multiply Q in U by real matrix RWORK(IRU), storing the
  1157. * result in A, copying to U
  1158. * CWorkspace: need 0
  1159. * RWorkspace: need N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
  1160. *
  1161. NRWORK = IRVT
  1162. CALL CLACRM( M, N, U, LDU, RWORK( IRU ), N, A, LDA,
  1163. $ RWORK( NRWORK ) )
  1164. CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
  1165. ELSE
  1166. *
  1167. * Path 5a (M >> N, JOBZ='A')
  1168. * Copy A to VT, generate P**H
  1169. * CWorkspace: need 2*N [tauq, taup] + N [work]
  1170. * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
  1171. * RWorkspace: need 0
  1172. *
  1173. CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1174. CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1175. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1176. *
  1177. * Copy A to U, generate Q
  1178. * CWorkspace: need 2*N [tauq, taup] + M [work]
  1179. * CWorkspace: prefer 2*N [tauq, taup] + M*NB [work]
  1180. * RWorkspace: need 0
  1181. *
  1182. CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
  1183. CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  1184. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1185. *
  1186. * Perform bidiagonal SVD, computing left singular vectors
  1187. * of bidiagonal matrix in RWORK(IRU) and computing right
  1188. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1189. * CWorkspace: need 0
  1190. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  1191. *
  1192. IRU = NRWORK
  1193. IRVT = IRU + N*N
  1194. NRWORK = IRVT + N*N
  1195. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1196. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1197. $ RWORK( NRWORK ), IWORK, INFO )
  1198. *
  1199. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1200. * storing the result in A, copying to VT
  1201. * CWorkspace: need 0
  1202. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
  1203. *
  1204. CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT, A, LDA,
  1205. $ RWORK( NRWORK ) )
  1206. CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT )
  1207. *
  1208. * Multiply Q in U by real matrix RWORK(IRU), storing the
  1209. * result in A, copying to U
  1210. * CWorkspace: need 0
  1211. * RWorkspace: need N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
  1212. *
  1213. NRWORK = IRVT
  1214. CALL CLACRM( M, N, U, LDU, RWORK( IRU ), N, A, LDA,
  1215. $ RWORK( NRWORK ) )
  1216. CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
  1217. END IF
  1218. *
  1219. ELSE
  1220. *
  1221. * M .LT. MNTHR2
  1222. *
  1223. * Path 6 (M >= N, but not much larger)
  1224. * Reduce to bidiagonal form without QR decomposition
  1225. * Use CUNMBR to compute singular vectors
  1226. *
  1227. IE = 1
  1228. NRWORK = IE + N
  1229. ITAUQ = 1
  1230. ITAUP = ITAUQ + N
  1231. NWORK = ITAUP + N
  1232. *
  1233. * Bidiagonalize A
  1234. * CWorkspace: need 2*N [tauq, taup] + M [work]
  1235. * CWorkspace: prefer 2*N [tauq, taup] + (M+N)*NB [work]
  1236. * RWorkspace: need N [e]
  1237. *
  1238. CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1239. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1240. $ IERR )
  1241. IF( WNTQN ) THEN
  1242. *
  1243. * Path 6n (M >= N, JOBZ='N')
  1244. * Compute singular values only
  1245. * CWorkspace: need 0
  1246. * RWorkspace: need N [e] + BDSPAC
  1247. *
  1248. CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM,1,DUM,1,
  1249. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  1250. ELSE IF( WNTQO ) THEN
  1251. IU = NWORK
  1252. IRU = NRWORK
  1253. IRVT = IRU + N*N
  1254. NRWORK = IRVT + N*N
  1255. IF( LWORK .GE. M*N + 3*N ) THEN
  1256. *
  1257. * WORK( IU ) is M by N
  1258. *
  1259. LDWRKU = M
  1260. ELSE
  1261. *
  1262. * WORK( IU ) is LDWRKU by N
  1263. *
  1264. LDWRKU = ( LWORK - 3*N ) / N
  1265. END IF
  1266. NWORK = IU + LDWRKU*N
  1267. *
  1268. * Path 6o (M >= N, JOBZ='O')
  1269. * Perform bidiagonal SVD, computing left singular vectors
  1270. * of bidiagonal matrix in RWORK(IRU) and computing right
  1271. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1272. * CWorkspace: need 0
  1273. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  1274. *
  1275. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1276. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1277. $ RWORK( NRWORK ), IWORK, INFO )
  1278. *
  1279. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1280. * Overwrite VT by right singular vectors of A
  1281. * CWorkspace: need 2*N [tauq, taup] + N*N [U] + N [work]
  1282. * CWorkspace: prefer 2*N [tauq, taup] + N*N [U] + N*NB [work]
  1283. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
  1284. *
  1285. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  1286. CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
  1287. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1288. $ LWORK-NWORK+1, IERR )
  1289. *
  1290. IF( LWORK .GE. M*N + 3*N ) THEN
  1291. *
  1292. * Path 6o-fast
  1293. * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
  1294. * Overwrite WORK(IU) by left singular vectors of A, copying
  1295. * to A
  1296. * CWorkspace: need 2*N [tauq, taup] + M*N [U] + N [work]
  1297. * CWorkspace: prefer 2*N [tauq, taup] + M*N [U] + N*NB [work]
  1298. * RWorkspace: need N [e] + N*N [RU]
  1299. *
  1300. CALL CLASET( 'F', M, N, CZERO, CZERO, WORK( IU ),
  1301. $ LDWRKU )
  1302. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
  1303. $ LDWRKU )
  1304. CALL CUNMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
  1305. $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
  1306. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1307. CALL CLACPY( 'F', M, N, WORK( IU ), LDWRKU, A, LDA )
  1308. ELSE
  1309. *
  1310. * Path 6o-slow
  1311. * Generate Q in A
  1312. * CWorkspace: need 2*N [tauq, taup] + N*N [U] + N [work]
  1313. * CWorkspace: prefer 2*N [tauq, taup] + N*N [U] + N*NB [work]
  1314. * RWorkspace: need 0
  1315. *
  1316. CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  1317. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1318. *
  1319. * Multiply Q in A by real matrix RWORK(IRU), storing the
  1320. * result in WORK(IU), copying to A
  1321. * CWorkspace: need 2*N [tauq, taup] + N*N [U]
  1322. * CWorkspace: prefer 2*N [tauq, taup] + M*N [U]
  1323. * RWorkspace: need N [e] + N*N [RU] + 2*N*N [rwork]
  1324. * RWorkspace: prefer N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
  1325. *
  1326. NRWORK = IRVT
  1327. DO 30 I = 1, M, LDWRKU
  1328. CHUNK = MIN( M-I+1, LDWRKU )
  1329. CALL CLACRM( CHUNK, N, A( I, 1 ), LDA,
  1330. $ RWORK( IRU ), N, WORK( IU ), LDWRKU,
  1331. $ RWORK( NRWORK ) )
  1332. CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  1333. $ A( I, 1 ), LDA )
  1334. 30 CONTINUE
  1335. END IF
  1336. *
  1337. ELSE IF( WNTQS ) THEN
  1338. *
  1339. * Path 6s (M >= N, JOBZ='S')
  1340. * Perform bidiagonal SVD, computing left singular vectors
  1341. * of bidiagonal matrix in RWORK(IRU) and computing right
  1342. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1343. * CWorkspace: need 0
  1344. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  1345. *
  1346. IRU = NRWORK
  1347. IRVT = IRU + N*N
  1348. NRWORK = IRVT + N*N
  1349. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1350. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1351. $ RWORK( NRWORK ), IWORK, INFO )
  1352. *
  1353. * Copy real matrix RWORK(IRU) to complex matrix U
  1354. * Overwrite U by left singular vectors of A
  1355. * CWorkspace: need 2*N [tauq, taup] + N [work]
  1356. * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
  1357. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
  1358. *
  1359. CALL CLASET( 'F', M, N, CZERO, CZERO, U, LDU )
  1360. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
  1361. CALL CUNMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
  1362. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1363. $ LWORK-NWORK+1, IERR )
  1364. *
  1365. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1366. * Overwrite VT by right singular vectors of A
  1367. * CWorkspace: need 2*N [tauq, taup] + N [work]
  1368. * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
  1369. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
  1370. *
  1371. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  1372. CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
  1373. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1374. $ LWORK-NWORK+1, IERR )
  1375. ELSE
  1376. *
  1377. * Path 6a (M >= N, JOBZ='A')
  1378. * Perform bidiagonal SVD, computing left singular vectors
  1379. * of bidiagonal matrix in RWORK(IRU) and computing right
  1380. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1381. * CWorkspace: need 0
  1382. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
  1383. *
  1384. IRU = NRWORK
  1385. IRVT = IRU + N*N
  1386. NRWORK = IRVT + N*N
  1387. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1388. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1389. $ RWORK( NRWORK ), IWORK, INFO )
  1390. *
  1391. * Set the right corner of U to identity matrix
  1392. *
  1393. CALL CLASET( 'F', M, M, CZERO, CZERO, U, LDU )
  1394. IF( M.GT.N ) THEN
  1395. CALL CLASET( 'F', M-N, M-N, CZERO, CONE,
  1396. $ U( N+1, N+1 ), LDU )
  1397. END IF
  1398. *
  1399. * Copy real matrix RWORK(IRU) to complex matrix U
  1400. * Overwrite U by left singular vectors of A
  1401. * CWorkspace: need 2*N [tauq, taup] + M [work]
  1402. * CWorkspace: prefer 2*N [tauq, taup] + M*NB [work]
  1403. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
  1404. *
  1405. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
  1406. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
  1407. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1408. $ LWORK-NWORK+1, IERR )
  1409. *
  1410. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1411. * Overwrite VT by right singular vectors of A
  1412. * CWorkspace: need 2*N [tauq, taup] + N [work]
  1413. * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
  1414. * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
  1415. *
  1416. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  1417. CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
  1418. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1419. $ LWORK-NWORK+1, IERR )
  1420. END IF
  1421. *
  1422. END IF
  1423. *
  1424. ELSE
  1425. *
  1426. * A has more columns than rows. If A has sufficiently more
  1427. * columns than rows, first reduce using the LQ decomposition (if
  1428. * sufficient workspace available)
  1429. *
  1430. IF( N.GE.MNTHR1 ) THEN
  1431. *
  1432. IF( WNTQN ) THEN
  1433. *
  1434. * Path 1t (N >> M, JOBZ='N')
  1435. * No singular vectors to be computed
  1436. *
  1437. ITAU = 1
  1438. NWORK = ITAU + M
  1439. *
  1440. * Compute A=L*Q
  1441. * CWorkspace: need M [tau] + M [work]
  1442. * CWorkspace: prefer M [tau] + M*NB [work]
  1443. * RWorkspace: need 0
  1444. *
  1445. CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  1446. $ LWORK-NWORK+1, IERR )
  1447. *
  1448. * Zero out above L
  1449. *
  1450. CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
  1451. $ LDA )
  1452. IE = 1
  1453. ITAUQ = 1
  1454. ITAUP = ITAUQ + M
  1455. NWORK = ITAUP + M
  1456. *
  1457. * Bidiagonalize L in A
  1458. * CWorkspace: need 2*M [tauq, taup] + M [work]
  1459. * CWorkspace: prefer 2*M [tauq, taup] + 2*M*NB [work]
  1460. * RWorkspace: need M [e]
  1461. *
  1462. CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1463. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1464. $ IERR )
  1465. NRWORK = IE + M
  1466. *
  1467. * Perform bidiagonal SVD, compute singular values only
  1468. * CWorkspace: need 0
  1469. * RWorkspace: need M [e] + BDSPAC
  1470. *
  1471. CALL SBDSDC( 'U', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
  1472. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  1473. *
  1474. ELSE IF( WNTQO ) THEN
  1475. *
  1476. * Path 2t (N >> M, JOBZ='O')
  1477. * M right singular vectors to be overwritten on A and
  1478. * M left singular vectors to be computed in U
  1479. *
  1480. IVT = 1
  1481. LDWKVT = M
  1482. *
  1483. * WORK(IVT) is M by M
  1484. *
  1485. IL = IVT + LDWKVT*M
  1486. IF( LWORK .GE. M*N + M*M + 3*M ) THEN
  1487. *
  1488. * WORK(IL) M by N
  1489. *
  1490. LDWRKL = M
  1491. CHUNK = N
  1492. ELSE
  1493. *
  1494. * WORK(IL) is M by CHUNK
  1495. *
  1496. LDWRKL = M
  1497. CHUNK = ( LWORK - M*M - 3*M ) / M
  1498. END IF
  1499. ITAU = IL + LDWRKL*CHUNK
  1500. NWORK = ITAU + M
  1501. *
  1502. * Compute A=L*Q
  1503. * CWorkspace: need M*M [VT] + M*M [L] + M [tau] + M [work]
  1504. * CWorkspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work]
  1505. * RWorkspace: need 0
  1506. *
  1507. CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  1508. $ LWORK-NWORK+1, IERR )
  1509. *
  1510. * Copy L to WORK(IL), zeroing about above it
  1511. *
  1512. CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
  1513. CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
  1514. $ WORK( IL+LDWRKL ), LDWRKL )
  1515. *
  1516. * Generate Q in A
  1517. * CWorkspace: need M*M [VT] + M*M [L] + M [tau] + M [work]
  1518. * CWorkspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work]
  1519. * RWorkspace: need 0
  1520. *
  1521. CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  1522. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1523. IE = 1
  1524. ITAUQ = ITAU
  1525. ITAUP = ITAUQ + M
  1526. NWORK = ITAUP + M
  1527. *
  1528. * Bidiagonalize L in WORK(IL)
  1529. * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
  1530. * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + 2*M*NB [work]
  1531. * RWorkspace: need M [e]
  1532. *
  1533. CALL CGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
  1534. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  1535. $ LWORK-NWORK+1, IERR )
  1536. *
  1537. * Perform bidiagonal SVD, computing left singular vectors
  1538. * of bidiagonal matrix in RWORK(IRU) and computing right
  1539. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1540. * CWorkspace: need 0
  1541. * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
  1542. *
  1543. IRU = IE + M
  1544. IRVT = IRU + M*M
  1545. NRWORK = IRVT + M*M
  1546. CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1547. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1548. $ RWORK( NRWORK ), IWORK, INFO )
  1549. *
  1550. * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
  1551. * Overwrite WORK(IU) by the left singular vectors of L
  1552. * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
  1553. * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + M*NB [work]
  1554. * RWorkspace: need 0
  1555. *
  1556. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  1557. CALL CUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
  1558. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1559. $ LWORK-NWORK+1, IERR )
  1560. *
  1561. * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
  1562. * Overwrite WORK(IVT) by the right singular vectors of L
  1563. * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
  1564. * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + M*NB [work]
  1565. * RWorkspace: need 0
  1566. *
  1567. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
  1568. $ LDWKVT )
  1569. CALL CUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
  1570. $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
  1571. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1572. *
  1573. * Multiply right singular vectors of L in WORK(IL) by Q
  1574. * in A, storing result in WORK(IL) and copying to A
  1575. * CWorkspace: need M*M [VT] + M*M [L]
  1576. * CWorkspace: prefer M*M [VT] + M*N [L]
  1577. * RWorkspace: need 0
  1578. *
  1579. DO 40 I = 1, N, CHUNK
  1580. BLK = MIN( N-I+1, CHUNK )
  1581. CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IVT ), M,
  1582. $ A( 1, I ), LDA, CZERO, WORK( IL ),
  1583. $ LDWRKL )
  1584. CALL CLACPY( 'F', M, BLK, WORK( IL ), LDWRKL,
  1585. $ A( 1, I ), LDA )
  1586. 40 CONTINUE
  1587. *
  1588. ELSE IF( WNTQS ) THEN
  1589. *
  1590. * Path 3t (N >> M, JOBZ='S')
  1591. * M right singular vectors to be computed in VT and
  1592. * M left singular vectors to be computed in U
  1593. *
  1594. IL = 1
  1595. *
  1596. * WORK(IL) is M by M
  1597. *
  1598. LDWRKL = M
  1599. ITAU = IL + LDWRKL*M
  1600. NWORK = ITAU + M
  1601. *
  1602. * Compute A=L*Q
  1603. * CWorkspace: need M*M [L] + M [tau] + M [work]
  1604. * CWorkspace: prefer M*M [L] + M [tau] + M*NB [work]
  1605. * RWorkspace: need 0
  1606. *
  1607. CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  1608. $ LWORK-NWORK+1, IERR )
  1609. *
  1610. * Copy L to WORK(IL), zeroing out above it
  1611. *
  1612. CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
  1613. CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
  1614. $ WORK( IL+LDWRKL ), LDWRKL )
  1615. *
  1616. * Generate Q in A
  1617. * CWorkspace: need M*M [L] + M [tau] + M [work]
  1618. * CWorkspace: prefer M*M [L] + M [tau] + M*NB [work]
  1619. * RWorkspace: need 0
  1620. *
  1621. CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  1622. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1623. IE = 1
  1624. ITAUQ = ITAU
  1625. ITAUP = ITAUQ + M
  1626. NWORK = ITAUP + M
  1627. *
  1628. * Bidiagonalize L in WORK(IL)
  1629. * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
  1630. * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + 2*M*NB [work]
  1631. * RWorkspace: need M [e]
  1632. *
  1633. CALL CGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
  1634. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  1635. $ LWORK-NWORK+1, IERR )
  1636. *
  1637. * Perform bidiagonal SVD, computing left singular vectors
  1638. * of bidiagonal matrix in RWORK(IRU) and computing right
  1639. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1640. * CWorkspace: need 0
  1641. * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
  1642. *
  1643. IRU = IE + M
  1644. IRVT = IRU + M*M
  1645. NRWORK = IRVT + M*M
  1646. CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1647. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1648. $ RWORK( NRWORK ), IWORK, INFO )
  1649. *
  1650. * Copy real matrix RWORK(IRU) to complex matrix U
  1651. * Overwrite U by left singular vectors of L
  1652. * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
  1653. * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + M*NB [work]
  1654. * RWorkspace: need 0
  1655. *
  1656. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  1657. CALL CUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
  1658. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1659. $ LWORK-NWORK+1, IERR )
  1660. *
  1661. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1662. * Overwrite VT by left singular vectors of L
  1663. * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
  1664. * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + M*NB [work]
  1665. * RWorkspace: need 0
  1666. *
  1667. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
  1668. CALL CUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
  1669. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1670. $ LWORK-NWORK+1, IERR )
  1671. *
  1672. * Copy VT to WORK(IL), multiply right singular vectors of L
  1673. * in WORK(IL) by Q in A, storing result in VT
  1674. * CWorkspace: need M*M [L]
  1675. * RWorkspace: need 0
  1676. *
  1677. CALL CLACPY( 'F', M, M, VT, LDVT, WORK( IL ), LDWRKL )
  1678. CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IL ), LDWRKL,
  1679. $ A, LDA, CZERO, VT, LDVT )
  1680. *
  1681. ELSE IF( WNTQA ) THEN
  1682. *
  1683. * Path 4t (N >> M, JOBZ='A')
  1684. * N right singular vectors to be computed in VT and
  1685. * M left singular vectors to be computed in U
  1686. *
  1687. IVT = 1
  1688. *
  1689. * WORK(IVT) is M by M
  1690. *
  1691. LDWKVT = M
  1692. ITAU = IVT + LDWKVT*M
  1693. NWORK = ITAU + M
  1694. *
  1695. * Compute A=L*Q, copying result to VT
  1696. * CWorkspace: need M*M [VT] + M [tau] + M [work]
  1697. * CWorkspace: prefer M*M [VT] + M [tau] + M*NB [work]
  1698. * RWorkspace: need 0
  1699. *
  1700. CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  1701. $ LWORK-NWORK+1, IERR )
  1702. CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
  1703. *
  1704. * Generate Q in VT
  1705. * CWorkspace: need M*M [VT] + M [tau] + N [work]
  1706. * CWorkspace: prefer M*M [VT] + M [tau] + N*NB [work]
  1707. * RWorkspace: need 0
  1708. *
  1709. CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  1710. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1711. *
  1712. * Produce L in A, zeroing out above it
  1713. *
  1714. CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
  1715. $ LDA )
  1716. IE = 1
  1717. ITAUQ = ITAU
  1718. ITAUP = ITAUQ + M
  1719. NWORK = ITAUP + M
  1720. *
  1721. * Bidiagonalize L in A
  1722. * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
  1723. * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + 2*M*NB [work]
  1724. * RWorkspace: need M [e]
  1725. *
  1726. CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1727. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1728. $ IERR )
  1729. *
  1730. * Perform bidiagonal SVD, computing left singular vectors
  1731. * of bidiagonal matrix in RWORK(IRU) and computing right
  1732. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1733. * CWorkspace: need 0
  1734. * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
  1735. *
  1736. IRU = IE + M
  1737. IRVT = IRU + M*M
  1738. NRWORK = IRVT + M*M
  1739. CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1740. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1741. $ RWORK( NRWORK ), IWORK, INFO )
  1742. *
  1743. * Copy real matrix RWORK(IRU) to complex matrix U
  1744. * Overwrite U by left singular vectors of L
  1745. * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
  1746. * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + M*NB [work]
  1747. * RWorkspace: need 0
  1748. *
  1749. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  1750. CALL CUNMBR( 'Q', 'L', 'N', M, M, M, A, LDA,
  1751. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1752. $ LWORK-NWORK+1, IERR )
  1753. *
  1754. * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
  1755. * Overwrite WORK(IVT) by right singular vectors of L
  1756. * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
  1757. * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + M*NB [work]
  1758. * RWorkspace: need 0
  1759. *
  1760. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
  1761. $ LDWKVT )
  1762. CALL CUNMBR( 'P', 'R', 'C', M, M, M, A, LDA,
  1763. $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
  1764. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1765. *
  1766. * Multiply right singular vectors of L in WORK(IVT) by
  1767. * Q in VT, storing result in A
  1768. * CWorkspace: need M*M [VT]
  1769. * RWorkspace: need 0
  1770. *
  1771. CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IVT ), LDWKVT,
  1772. $ VT, LDVT, CZERO, A, LDA )
  1773. *
  1774. * Copy right singular vectors of A from A to VT
  1775. *
  1776. CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
  1777. *
  1778. END IF
  1779. *
  1780. ELSE IF( N.GE.MNTHR2 ) THEN
  1781. *
  1782. * MNTHR2 <= N < MNTHR1
  1783. *
  1784. * Path 5t (N >> M, but not as much as MNTHR1)
  1785. * Reduce to bidiagonal form without QR decomposition, use
  1786. * CUNGBR and matrix multiplication to compute singular vectors
  1787. *
  1788. IE = 1
  1789. NRWORK = IE + M
  1790. ITAUQ = 1
  1791. ITAUP = ITAUQ + M
  1792. NWORK = ITAUP + M
  1793. *
  1794. * Bidiagonalize A
  1795. * CWorkspace: need 2*M [tauq, taup] + N [work]
  1796. * CWorkspace: prefer 2*M [tauq, taup] + (M+N)*NB [work]
  1797. * RWorkspace: need M [e]
  1798. *
  1799. CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1800. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1801. $ IERR )
  1802. *
  1803. IF( WNTQN ) THEN
  1804. *
  1805. * Path 5tn (N >> M, JOBZ='N')
  1806. * Compute singular values only
  1807. * CWorkspace: need 0
  1808. * RWorkspace: need M [e] + BDSPAC
  1809. *
  1810. CALL SBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
  1811. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  1812. ELSE IF( WNTQO ) THEN
  1813. IRVT = NRWORK
  1814. IRU = IRVT + M*M
  1815. NRWORK = IRU + M*M
  1816. IVT = NWORK
  1817. *
  1818. * Path 5to (N >> M, JOBZ='O')
  1819. * Copy A to U, generate Q
  1820. * CWorkspace: need 2*M [tauq, taup] + M [work]
  1821. * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
  1822. * RWorkspace: need 0
  1823. *
  1824. CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
  1825. CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  1826. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1827. *
  1828. * Generate P**H in A
  1829. * CWorkspace: need 2*M [tauq, taup] + M [work]
  1830. * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
  1831. * RWorkspace: need 0
  1832. *
  1833. CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  1834. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1835. *
  1836. LDWKVT = M
  1837. IF( LWORK .GE. M*N + 3*M ) THEN
  1838. *
  1839. * WORK( IVT ) is M by N
  1840. *
  1841. NWORK = IVT + LDWKVT*N
  1842. CHUNK = N
  1843. ELSE
  1844. *
  1845. * WORK( IVT ) is M by CHUNK
  1846. *
  1847. CHUNK = ( LWORK - 3*M ) / M
  1848. NWORK = IVT + LDWKVT*CHUNK
  1849. END IF
  1850. *
  1851. * Perform bidiagonal SVD, computing left singular vectors
  1852. * of bidiagonal matrix in RWORK(IRU) and computing right
  1853. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1854. * CWorkspace: need 0
  1855. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
  1856. *
  1857. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1858. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1859. $ RWORK( NRWORK ), IWORK, INFO )
  1860. *
  1861. * Multiply Q in U by real matrix RWORK(IRVT)
  1862. * storing the result in WORK(IVT), copying to U
  1863. * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
  1864. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
  1865. *
  1866. CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, WORK( IVT ),
  1867. $ LDWKVT, RWORK( NRWORK ) )
  1868. CALL CLACPY( 'F', M, M, WORK( IVT ), LDWKVT, U, LDU )
  1869. *
  1870. * Multiply RWORK(IRVT) by P**H in A, storing the
  1871. * result in WORK(IVT), copying to A
  1872. * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
  1873. * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT]
  1874. * RWorkspace: need M [e] + M*M [RVT] + 2*M*M [rwork]
  1875. * RWorkspace: prefer M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
  1876. *
  1877. NRWORK = IRU
  1878. DO 50 I = 1, N, CHUNK
  1879. BLK = MIN( N-I+1, CHUNK )
  1880. CALL CLARCM( M, BLK, RWORK( IRVT ), M, A( 1, I ), LDA,
  1881. $ WORK( IVT ), LDWKVT, RWORK( NRWORK ) )
  1882. CALL CLACPY( 'F', M, BLK, WORK( IVT ), LDWKVT,
  1883. $ A( 1, I ), LDA )
  1884. 50 CONTINUE
  1885. ELSE IF( WNTQS ) THEN
  1886. *
  1887. * Path 5ts (N >> M, JOBZ='S')
  1888. * Copy A to U, generate Q
  1889. * CWorkspace: need 2*M [tauq, taup] + M [work]
  1890. * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
  1891. * RWorkspace: need 0
  1892. *
  1893. CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
  1894. CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  1895. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1896. *
  1897. * Copy A to VT, generate P**H
  1898. * CWorkspace: need 2*M [tauq, taup] + M [work]
  1899. * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
  1900. * RWorkspace: need 0
  1901. *
  1902. CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
  1903. CALL CUNGBR( 'P', M, N, M, VT, LDVT, WORK( ITAUP ),
  1904. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1905. *
  1906. * Perform bidiagonal SVD, computing left singular vectors
  1907. * of bidiagonal matrix in RWORK(IRU) and computing right
  1908. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1909. * CWorkspace: need 0
  1910. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
  1911. *
  1912. IRVT = NRWORK
  1913. IRU = IRVT + M*M
  1914. NRWORK = IRU + M*M
  1915. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1916. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1917. $ RWORK( NRWORK ), IWORK, INFO )
  1918. *
  1919. * Multiply Q in U by real matrix RWORK(IRU), storing the
  1920. * result in A, copying to U
  1921. * CWorkspace: need 0
  1922. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
  1923. *
  1924. CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, A, LDA,
  1925. $ RWORK( NRWORK ) )
  1926. CALL CLACPY( 'F', M, M, A, LDA, U, LDU )
  1927. *
  1928. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1929. * storing the result in A, copying to VT
  1930. * CWorkspace: need 0
  1931. * RWorkspace: need M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
  1932. *
  1933. NRWORK = IRU
  1934. CALL CLARCM( M, N, RWORK( IRVT ), M, VT, LDVT, A, LDA,
  1935. $ RWORK( NRWORK ) )
  1936. CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
  1937. ELSE
  1938. *
  1939. * Path 5ta (N >> M, JOBZ='A')
  1940. * Copy A to U, generate Q
  1941. * CWorkspace: need 2*M [tauq, taup] + M [work]
  1942. * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
  1943. * RWorkspace: need 0
  1944. *
  1945. CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
  1946. CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  1947. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1948. *
  1949. * Copy A to VT, generate P**H
  1950. * CWorkspace: need 2*M [tauq, taup] + N [work]
  1951. * CWorkspace: prefer 2*M [tauq, taup] + N*NB [work]
  1952. * RWorkspace: need 0
  1953. *
  1954. CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
  1955. CALL CUNGBR( 'P', N, N, M, VT, LDVT, WORK( ITAUP ),
  1956. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1957. *
  1958. * Perform bidiagonal SVD, computing left singular vectors
  1959. * of bidiagonal matrix in RWORK(IRU) and computing right
  1960. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1961. * CWorkspace: need 0
  1962. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
  1963. *
  1964. IRVT = NRWORK
  1965. IRU = IRVT + M*M
  1966. NRWORK = IRU + M*M
  1967. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1968. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1969. $ RWORK( NRWORK ), IWORK, INFO )
  1970. *
  1971. * Multiply Q in U by real matrix RWORK(IRU), storing the
  1972. * result in A, copying to U
  1973. * CWorkspace: need 0
  1974. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
  1975. *
  1976. CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, A, LDA,
  1977. $ RWORK( NRWORK ) )
  1978. CALL CLACPY( 'F', M, M, A, LDA, U, LDU )
  1979. *
  1980. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1981. * storing the result in A, copying to VT
  1982. * CWorkspace: need 0
  1983. * RWorkspace: need M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
  1984. *
  1985. NRWORK = IRU
  1986. CALL CLARCM( M, N, RWORK( IRVT ), M, VT, LDVT, A, LDA,
  1987. $ RWORK( NRWORK ) )
  1988. CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
  1989. END IF
  1990. *
  1991. ELSE
  1992. *
  1993. * N .LT. MNTHR2
  1994. *
  1995. * Path 6t (N > M, but not much larger)
  1996. * Reduce to bidiagonal form without LQ decomposition
  1997. * Use CUNMBR to compute singular vectors
  1998. *
  1999. IE = 1
  2000. NRWORK = IE + M
  2001. ITAUQ = 1
  2002. ITAUP = ITAUQ + M
  2003. NWORK = ITAUP + M
  2004. *
  2005. * Bidiagonalize A
  2006. * CWorkspace: need 2*M [tauq, taup] + N [work]
  2007. * CWorkspace: prefer 2*M [tauq, taup] + (M+N)*NB [work]
  2008. * RWorkspace: need M [e]
  2009. *
  2010. CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  2011. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  2012. $ IERR )
  2013. IF( WNTQN ) THEN
  2014. *
  2015. * Path 6tn (N > M, JOBZ='N')
  2016. * Compute singular values only
  2017. * CWorkspace: need 0
  2018. * RWorkspace: need M [e] + BDSPAC
  2019. *
  2020. CALL SBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
  2021. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  2022. ELSE IF( WNTQO ) THEN
  2023. * Path 6to (N > M, JOBZ='O')
  2024. LDWKVT = M
  2025. IVT = NWORK
  2026. IF( LWORK .GE. M*N + 3*M ) THEN
  2027. *
  2028. * WORK( IVT ) is M by N
  2029. *
  2030. CALL CLASET( 'F', M, N, CZERO, CZERO, WORK( IVT ),
  2031. $ LDWKVT )
  2032. NWORK = IVT + LDWKVT*N
  2033. ELSE
  2034. *
  2035. * WORK( IVT ) is M by CHUNK
  2036. *
  2037. CHUNK = ( LWORK - 3*M ) / M
  2038. NWORK = IVT + LDWKVT*CHUNK
  2039. END IF
  2040. *
  2041. * Perform bidiagonal SVD, computing left singular vectors
  2042. * of bidiagonal matrix in RWORK(IRU) and computing right
  2043. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  2044. * CWorkspace: need 0
  2045. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
  2046. *
  2047. IRVT = NRWORK
  2048. IRU = IRVT + M*M
  2049. NRWORK = IRU + M*M
  2050. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  2051. $ M, RWORK( IRVT ), M, DUM, IDUM,
  2052. $ RWORK( NRWORK ), IWORK, INFO )
  2053. *
  2054. * Copy real matrix RWORK(IRU) to complex matrix U
  2055. * Overwrite U by left singular vectors of A
  2056. * CWorkspace: need 2*M [tauq, taup] + M*M [VT] + M [work]
  2057. * CWorkspace: prefer 2*M [tauq, taup] + M*M [VT] + M*NB [work]
  2058. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
  2059. *
  2060. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  2061. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
  2062. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  2063. $ LWORK-NWORK+1, IERR )
  2064. *
  2065. IF( LWORK .GE. M*N + 3*M ) THEN
  2066. *
  2067. * Path 6to-fast
  2068. * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
  2069. * Overwrite WORK(IVT) by right singular vectors of A,
  2070. * copying to A
  2071. * CWorkspace: need 2*M [tauq, taup] + M*N [VT] + M [work]
  2072. * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT] + M*NB [work]
  2073. * RWorkspace: need M [e] + M*M [RVT]
  2074. *
  2075. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
  2076. $ LDWKVT )
  2077. CALL CUNMBR( 'P', 'R', 'C', M, N, M, A, LDA,
  2078. $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
  2079. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  2080. CALL CLACPY( 'F', M, N, WORK( IVT ), LDWKVT, A, LDA )
  2081. ELSE
  2082. *
  2083. * Path 6to-slow
  2084. * Generate P**H in A
  2085. * CWorkspace: need 2*M [tauq, taup] + M*M [VT] + M [work]
  2086. * CWorkspace: prefer 2*M [tauq, taup] + M*M [VT] + M*NB [work]
  2087. * RWorkspace: need 0
  2088. *
  2089. CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  2090. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  2091. *
  2092. * Multiply Q in A by real matrix RWORK(IRU), storing the
  2093. * result in WORK(IU), copying to A
  2094. * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
  2095. * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT]
  2096. * RWorkspace: need M [e] + M*M [RVT] + 2*M*M [rwork]
  2097. * RWorkspace: prefer M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
  2098. *
  2099. NRWORK = IRU
  2100. DO 60 I = 1, N, CHUNK
  2101. BLK = MIN( N-I+1, CHUNK )
  2102. CALL CLARCM( M, BLK, RWORK( IRVT ), M, A( 1, I ),
  2103. $ LDA, WORK( IVT ), LDWKVT,
  2104. $ RWORK( NRWORK ) )
  2105. CALL CLACPY( 'F', M, BLK, WORK( IVT ), LDWKVT,
  2106. $ A( 1, I ), LDA )
  2107. 60 CONTINUE
  2108. END IF
  2109. ELSE IF( WNTQS ) THEN
  2110. *
  2111. * Path 6ts (N > M, JOBZ='S')
  2112. * Perform bidiagonal SVD, computing left singular vectors
  2113. * of bidiagonal matrix in RWORK(IRU) and computing right
  2114. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  2115. * CWorkspace: need 0
  2116. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
  2117. *
  2118. IRVT = NRWORK
  2119. IRU = IRVT + M*M
  2120. NRWORK = IRU + M*M
  2121. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  2122. $ M, RWORK( IRVT ), M, DUM, IDUM,
  2123. $ RWORK( NRWORK ), IWORK, INFO )
  2124. *
  2125. * Copy real matrix RWORK(IRU) to complex matrix U
  2126. * Overwrite U by left singular vectors of A
  2127. * CWorkspace: need 2*M [tauq, taup] + M [work]
  2128. * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
  2129. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
  2130. *
  2131. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  2132. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
  2133. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  2134. $ LWORK-NWORK+1, IERR )
  2135. *
  2136. * Copy real matrix RWORK(IRVT) to complex matrix VT
  2137. * Overwrite VT by right singular vectors of A
  2138. * CWorkspace: need 2*M [tauq, taup] + M [work]
  2139. * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
  2140. * RWorkspace: need M [e] + M*M [RVT]
  2141. *
  2142. CALL CLASET( 'F', M, N, CZERO, CZERO, VT, LDVT )
  2143. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
  2144. CALL CUNMBR( 'P', 'R', 'C', M, N, M, A, LDA,
  2145. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  2146. $ LWORK-NWORK+1, IERR )
  2147. ELSE
  2148. *
  2149. * Path 6ta (N > M, JOBZ='A')
  2150. * Perform bidiagonal SVD, computing left singular vectors
  2151. * of bidiagonal matrix in RWORK(IRU) and computing right
  2152. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  2153. * CWorkspace: need 0
  2154. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
  2155. *
  2156. IRVT = NRWORK
  2157. IRU = IRVT + M*M
  2158. NRWORK = IRU + M*M
  2159. *
  2160. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  2161. $ M, RWORK( IRVT ), M, DUM, IDUM,
  2162. $ RWORK( NRWORK ), IWORK, INFO )
  2163. *
  2164. * Copy real matrix RWORK(IRU) to complex matrix U
  2165. * Overwrite U by left singular vectors of A
  2166. * CWorkspace: need 2*M [tauq, taup] + M [work]
  2167. * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
  2168. * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
  2169. *
  2170. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  2171. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
  2172. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  2173. $ LWORK-NWORK+1, IERR )
  2174. *
  2175. * Set all of VT to identity matrix
  2176. *
  2177. CALL CLASET( 'F', N, N, CZERO, CONE, VT, LDVT )
  2178. *
  2179. * Copy real matrix RWORK(IRVT) to complex matrix VT
  2180. * Overwrite VT by right singular vectors of A
  2181. * CWorkspace: need 2*M [tauq, taup] + N [work]
  2182. * CWorkspace: prefer 2*M [tauq, taup] + N*NB [work]
  2183. * RWorkspace: need M [e] + M*M [RVT]
  2184. *
  2185. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
  2186. CALL CUNMBR( 'P', 'R', 'C', N, N, M, A, LDA,
  2187. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  2188. $ LWORK-NWORK+1, IERR )
  2189. END IF
  2190. *
  2191. END IF
  2192. *
  2193. END IF
  2194. *
  2195. * Undo scaling if necessary
  2196. *
  2197. IF( ISCL.EQ.1 ) THEN
  2198. IF( ANRM.GT.BIGNUM )
  2199. $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  2200. $ IERR )
  2201. IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
  2202. $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
  2203. $ RWORK( IE ), MINMN, IERR )
  2204. IF( ANRM.LT.SMLNUM )
  2205. $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  2206. $ IERR )
  2207. IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
  2208. $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
  2209. $ RWORK( IE ), MINMN, IERR )
  2210. END IF
  2211. *
  2212. * Return optimal workspace in WORK(1)
  2213. *
  2214. WORK( 1 ) = MAXWRK
  2215. *
  2216. RETURN
  2217. *
  2218. * End of CGESDD
  2219. *
  2220. END