|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- SUBROUTINE ZHEMVF ( UPLO, N, ALPHA, A, LDA, X, INCX,
- $ BETA, Y, INCY )
- * .. Scalar Arguments ..
- COMPLEX*16 ALPHA, BETA
- INTEGER INCX, INCY, LDA, N
- CHARACTER*1 UPLO
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), X( * ), Y( * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZHEMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n hermitian matrix.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the upper or lower
- * triangular part of the array A is to be referenced as
- * follows:
- *
- * UPLO = 'U' or 'u' Only the upper triangular part of A
- * is to be referenced.
- *
- * UPLO = 'L' or 'l' Only the lower triangular part of A
- * is to be referenced.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * ALPHA - COMPLEX*16 .
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- * Before entry with UPLO = 'U' or 'u', the leading n by n
- * upper triangular part of the array A must contain the upper
- * triangular part of the hermitian matrix and the strictly
- * lower triangular part of A is not referenced.
- * Before entry with UPLO = 'L' or 'l', the leading n by n
- * lower triangular part of the array A must contain the lower
- * triangular part of the hermitian matrix and the strictly
- * upper triangular part of A is not referenced.
- * Note that the imaginary parts of the diagonal elements need
- * not be set and are assumed to be zero.
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. LDA must be at least
- * max( 1, n ).
- * Unchanged on exit.
- *
- * X - COMPLEX*16 array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element vector x.
- * Unchanged on exit.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- * BETA - COMPLEX*16 .
- * On entry, BETA specifies the scalar beta. When BETA is
- * supplied as zero then Y need not be set on input.
- * Unchanged on exit.
- *
- * Y - COMPLEX*16 array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCY ) ).
- * Before entry, the incremented array Y must contain the n
- * element vector y. On exit, Y is overwritten by the updated
- * vector y.
- *
- * INCY - INTEGER.
- * On entry, INCY specifies the increment for the elements of
- * Y. INCY must not be zero.
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * .. Local Scalars ..
- COMPLEX*16 TEMP1, TEMP2
- INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC DCONJG, MAX, DBLE
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.LSAME( UPLO, 'U' ).AND.
- $ .NOT.LSAME( UPLO, 'L' ).AND.
- $ .NOT.LSAME( UPLO, 'V' ).AND.
- $ .NOT.LSAME( UPLO, 'M' ))THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( LDA.LT.MAX( 1, N ) )THEN
- INFO = 5
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 7
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 10
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'ZHEMV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * Set up the start points in X and Y.
- *
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( N - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( N - 1 )*INCY
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through the triangular part
- * of A.
- *
- * First form y := beta*y.
- *
- IF( BETA.NE.ONE )THEN
- IF( INCY.EQ.1 )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 10, I = 1, N
- Y( I ) = ZERO
- 10 CONTINUE
- ELSE
- DO 20, I = 1, N
- Y( I ) = BETA*Y( I )
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF( BETA.EQ.ZERO )THEN
- DO 30, I = 1, N
- Y( IY ) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40, I = 1, N
- Y( IY ) = BETA*Y( IY )
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF( ALPHA.EQ.ZERO )
- $ RETURN
-
-
- IF( LSAME( UPLO, 'U' ) )THEN
- *
- * Form y when A is stored in upper triangle.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 60, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- DO 50, I = 1, J - 1
- Y( I ) = Y( I ) + TEMP1*A( I, J )
- TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( I )
- 50 CONTINUE
- Y( J ) = Y( J ) + TEMP1*DBLE( A( J, J ) ) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70, I = 1, J - 1
- Y( IY ) = Y( IY ) + TEMP1*A( I, J )
- TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( IX )
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y( JY ) = Y( JY ) + TEMP1*DBLE( A( J, J ) ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 80 CONTINUE
- END IF
- RETURN
- ENDIF
-
-
- IF( LSAME( UPLO, 'L' ) )THEN
- *
- * Form y when A is stored in lower triangle.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 100, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- Y( J ) = Y( J ) + TEMP1*DBLE( A( J, J ) )
- DO 90, I = J + 1, N
- Y( I ) = Y( I ) + TEMP1*A( I, J )
- TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( I )
- 90 CONTINUE
- Y( J ) = Y( J ) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- Y( JY ) = Y( JY ) + TEMP1*DBLE( A( J, J ) )
- IX = JX
- IY = JY
- DO 110, I = J + 1, N
- IX = IX + INCX
- IY = IY + INCY
- Y( IY ) = Y( IY ) + TEMP1*A( I, J )
- TEMP2 = TEMP2 + DCONJG( A( I, J ) )*X( IX )
- 110 CONTINUE
- Y( JY ) = Y( JY ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- RETURN
- END IF
-
-
- IF( LSAME( UPLO, 'V' ) )THEN
- *
- * Form y when A is stored in upper triangle.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 160, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- DO 150, I = 1, J - 1
- Y( I ) = Y( I ) + TEMP1* DCONJG(A( I, J ))
- TEMP2 = TEMP2 + A( I, J )*X( I )
- 150 CONTINUE
- Y( J ) = Y( J ) + TEMP1*DBLE( A( J, J ) ) + ALPHA*TEMP2
- 160 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 180, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 170, I = 1, J - 1
- Y( IY ) = Y( IY ) + TEMP1* DCONJG(A( I, J ))
- TEMP2 = TEMP2 + A( I, J )*X( IX )
- IX = IX + INCX
- IY = IY + INCY
- 170 CONTINUE
- Y( JY ) = Y( JY ) + TEMP1*DBLE( A( J, J ) ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 180 CONTINUE
- END IF
- RETURN
- ENDIF
-
-
- IF( LSAME( UPLO, 'M' ) )THEN
- *
- * Form y when A is stored in lower triangle.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 200, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- Y( J ) = Y( J ) + TEMP1*DBLE( A( J, J ) )
- DO 190, I = J + 1, N
- Y( I ) = Y( I ) + TEMP1*DCONJG(A( I, J ))
- TEMP2 = TEMP2 + A( I, J )*X( I )
- 190 CONTINUE
- Y( J ) = Y( J ) + ALPHA*TEMP2
- 200 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 220, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- Y( JY ) = Y( JY ) + TEMP1*DBLE( A( J, J ) )
- IX = JX
- IY = JY
- DO 210, I = J + 1, N
- IX = IX + INCX
- IY = IY + INCY
- Y( IY ) = Y( IY ) + TEMP1*DCONJG(A( I, J ))
- TEMP2 = TEMP2 + A( I, J )*X( IX )
- 210 CONTINUE
- Y( JY ) = Y( JY ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 220 CONTINUE
- END IF
- RETURN
- END IF
- *
- RETURN
- *
- * End of ZHEMV .
- *
- END
|