You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgemm3mf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. SUBROUTINE CGEMM3MF(TRA,TRB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  2. * .. Scalar Arguments ..
  3. COMPLEX ALPHA,BETA
  4. INTEGER K,LDA,LDB,LDC,M,N
  5. CHARACTER TRA,TRB
  6. * ..
  7. * .. Array Arguments ..
  8. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CGEMM performs one of the matrix-matrix operations
  15. *
  16. * C := alpha*op( A )*op( B ) + beta*C,
  17. *
  18. * where op( X ) is one of
  19. *
  20. * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
  21. *
  22. * alpha and beta are scalars, and A, B and C are matrices, with op( A )
  23. * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
  24. *
  25. * Arguments
  26. * ==========
  27. *
  28. * TRA - CHARACTER*1.
  29. * On entry, TRA specifies the form of op( A ) to be used in
  30. * the matrix multiplication as follows:
  31. *
  32. * TRA = 'N' or 'n', op( A ) = A.
  33. *
  34. * TRA = 'T' or 't', op( A ) = A'.
  35. *
  36. * TRA = 'C' or 'c', op( A ) = conjg( A' ).
  37. *
  38. * Unchanged on exit.
  39. *
  40. * TRB - CHARACTER*1.
  41. * On entry, TRB specifies the form of op( B ) to be used in
  42. * the matrix multiplication as follows:
  43. *
  44. * TRB = 'N' or 'n', op( B ) = B.
  45. *
  46. * TRB = 'T' or 't', op( B ) = B'.
  47. *
  48. * TRB = 'C' or 'c', op( B ) = conjg( B' ).
  49. *
  50. * Unchanged on exit.
  51. *
  52. * M - INTEGER.
  53. * On entry, M specifies the number of rows of the matrix
  54. * op( A ) and of the matrix C. M must be at least zero.
  55. * Unchanged on exit.
  56. *
  57. * N - INTEGER.
  58. * On entry, N specifies the number of columns of the matrix
  59. * op( B ) and the number of columns of the matrix C. N must be
  60. * at least zero.
  61. * Unchanged on exit.
  62. *
  63. * K - INTEGER.
  64. * On entry, K specifies the number of columns of the matrix
  65. * op( A ) and the number of rows of the matrix op( B ). K must
  66. * be at least zero.
  67. * Unchanged on exit.
  68. *
  69. * ALPHA - COMPLEX .
  70. * On entry, ALPHA specifies the scalar alpha.
  71. * Unchanged on exit.
  72. *
  73. * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
  74. * k when TRA = 'N' or 'n', and is m otherwise.
  75. * Before entry with TRA = 'N' or 'n', the leading m by k
  76. * part of the array A must contain the matrix A, otherwise
  77. * the leading k by m part of the array A must contain the
  78. * matrix A.
  79. * Unchanged on exit.
  80. *
  81. * LDA - INTEGER.
  82. * On entry, LDA specifies the first dimension of A as declared
  83. * in the calling (sub) program. When TRA = 'N' or 'n' then
  84. * LDA must be at least max( 1, m ), otherwise LDA must be at
  85. * least max( 1, k ).
  86. * Unchanged on exit.
  87. *
  88. * B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
  89. * n when TRB = 'N' or 'n', and is k otherwise.
  90. * Before entry with TRB = 'N' or 'n', the leading k by n
  91. * part of the array B must contain the matrix B, otherwise
  92. * the leading n by k part of the array B must contain the
  93. * matrix B.
  94. * Unchanged on exit.
  95. *
  96. * LDB - INTEGER.
  97. * On entry, LDB specifies the first dimension of B as declared
  98. * in the calling (sub) program. When TRB = 'N' or 'n' then
  99. * LDB must be at least max( 1, k ), otherwise LDB must be at
  100. * least max( 1, n ).
  101. * Unchanged on exit.
  102. *
  103. * BETA - COMPLEX .
  104. * On entry, BETA specifies the scalar beta. When BETA is
  105. * supplied as zero then C need not be set on input.
  106. * Unchanged on exit.
  107. *
  108. * C - COMPLEX array of DIMENSION ( LDC, n ).
  109. * Before entry, the leading m by n part of the array C must
  110. * contain the matrix C, except when beta is zero, in which
  111. * case C need not be set on entry.
  112. * On exit, the array C is overwritten by the m by n matrix
  113. * ( alpha*op( A )*op( B ) + beta*C ).
  114. *
  115. * LDC - INTEGER.
  116. * On entry, LDC specifies the first dimension of C as declared
  117. * in the calling (sub) program. LDC must be at least
  118. * max( 1, m ).
  119. * Unchanged on exit.
  120. *
  121. *
  122. * Level 3 Blas routine.
  123. *
  124. * -- Written on 8-February-1989.
  125. * Jack Dongarra, Argonne National Laboratory.
  126. * Iain Duff, AERE Harwell.
  127. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  128. * Sven Hammarling, Numerical Algorithms Group Ltd.
  129. *
  130. *
  131. * .. External Functions ..
  132. LOGICAL LSAME
  133. EXTERNAL LSAME
  134. * ..
  135. * .. External Subroutines ..
  136. EXTERNAL XERBLA
  137. * ..
  138. * .. Intrinsic Functions ..
  139. INTRINSIC CONJG,MAX
  140. * ..
  141. * .. Local Scalars ..
  142. COMPLEX TEMP
  143. INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
  144. LOGICAL CONJA,CONJB,NOTA,NOTB
  145. * ..
  146. * .. Parameters ..
  147. COMPLEX ONE
  148. PARAMETER (ONE= (1.0E+0,0.0E+0))
  149. COMPLEX ZERO
  150. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  151. * ..
  152. *
  153. * Set NOTA and NOTB as true if A and B respectively are not
  154. * conjugated or transposed, set CONJA and CONJB as true if A and
  155. * B respectively are to be transposed but not conjugated and set
  156. * NROWA, NCOLA and NROWB as the number of rows and columns of A
  157. * and the number of rows of B respectively.
  158. *
  159. NOTA = LSAME(TRA,'N')
  160. NOTB = LSAME(TRB,'N')
  161. CONJA = LSAME(TRA,'C')
  162. CONJB = LSAME(TRB,'C')
  163. IF (NOTA) THEN
  164. NROWA = M
  165. NCOLA = K
  166. ELSE
  167. NROWA = K
  168. NCOLA = M
  169. END IF
  170. IF (NOTB) THEN
  171. NROWB = K
  172. ELSE
  173. NROWB = N
  174. END IF
  175. *
  176. * Test the input parameters.
  177. *
  178. INFO = 0
  179. IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
  180. + (.NOT.LSAME(TRA,'T'))) THEN
  181. INFO = 1
  182. ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
  183. + (.NOT.LSAME(TRB,'T'))) THEN
  184. INFO = 2
  185. ELSE IF (M.LT.0) THEN
  186. INFO = 3
  187. ELSE IF (N.LT.0) THEN
  188. INFO = 4
  189. ELSE IF (K.LT.0) THEN
  190. INFO = 5
  191. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  192. INFO = 8
  193. ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
  194. INFO = 10
  195. ELSE IF (LDC.LT.MAX(1,M)) THEN
  196. INFO = 13
  197. END IF
  198. IF (INFO.NE.0) THEN
  199. CALL XERBLA('CGEMM ',INFO)
  200. RETURN
  201. END IF
  202. *
  203. * Quick return if possible.
  204. *
  205. IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  206. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
  207. *
  208. * And when alpha.eq.zero.
  209. *
  210. IF (ALPHA.EQ.ZERO) THEN
  211. IF (BETA.EQ.ZERO) THEN
  212. DO 20 J = 1,N
  213. DO 10 I = 1,M
  214. C(I,J) = ZERO
  215. 10 CONTINUE
  216. 20 CONTINUE
  217. ELSE
  218. DO 40 J = 1,N
  219. DO 30 I = 1,M
  220. C(I,J) = BETA*C(I,J)
  221. 30 CONTINUE
  222. 40 CONTINUE
  223. END IF
  224. RETURN
  225. END IF
  226. *
  227. * Start the operations.
  228. *
  229. IF (NOTB) THEN
  230. IF (NOTA) THEN
  231. *
  232. * Form C := alpha*A*B + beta*C.
  233. *
  234. DO 90 J = 1,N
  235. IF (BETA.EQ.ZERO) THEN
  236. DO 50 I = 1,M
  237. C(I,J) = ZERO
  238. 50 CONTINUE
  239. ELSE IF (BETA.NE.ONE) THEN
  240. DO 60 I = 1,M
  241. C(I,J) = BETA*C(I,J)
  242. 60 CONTINUE
  243. END IF
  244. DO 80 L = 1,K
  245. IF (B(L,J).NE.ZERO) THEN
  246. TEMP = ALPHA*B(L,J)
  247. DO 70 I = 1,M
  248. C(I,J) = C(I,J) + TEMP*A(I,L)
  249. 70 CONTINUE
  250. END IF
  251. 80 CONTINUE
  252. 90 CONTINUE
  253. ELSE IF (CONJA) THEN
  254. *
  255. * Form C := alpha*conjg( A' )*B + beta*C.
  256. *
  257. DO 120 J = 1,N
  258. DO 110 I = 1,M
  259. TEMP = ZERO
  260. DO 100 L = 1,K
  261. TEMP = TEMP + CONJG(A(L,I))*B(L,J)
  262. 100 CONTINUE
  263. IF (BETA.EQ.ZERO) THEN
  264. C(I,J) = ALPHA*TEMP
  265. ELSE
  266. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  267. END IF
  268. 110 CONTINUE
  269. 120 CONTINUE
  270. ELSE
  271. *
  272. * Form C := alpha*A'*B + beta*C
  273. *
  274. DO 150 J = 1,N
  275. DO 140 I = 1,M
  276. TEMP = ZERO
  277. DO 130 L = 1,K
  278. TEMP = TEMP + A(L,I)*B(L,J)
  279. 130 CONTINUE
  280. IF (BETA.EQ.ZERO) THEN
  281. C(I,J) = ALPHA*TEMP
  282. ELSE
  283. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  284. END IF
  285. 140 CONTINUE
  286. 150 CONTINUE
  287. END IF
  288. ELSE IF (NOTA) THEN
  289. IF (CONJB) THEN
  290. *
  291. * Form C := alpha*A*conjg( B' ) + beta*C.
  292. *
  293. DO 200 J = 1,N
  294. IF (BETA.EQ.ZERO) THEN
  295. DO 160 I = 1,M
  296. C(I,J) = ZERO
  297. 160 CONTINUE
  298. ELSE IF (BETA.NE.ONE) THEN
  299. DO 170 I = 1,M
  300. C(I,J) = BETA*C(I,J)
  301. 170 CONTINUE
  302. END IF
  303. DO 190 L = 1,K
  304. IF (B(J,L).NE.ZERO) THEN
  305. TEMP = ALPHA*CONJG(B(J,L))
  306. DO 180 I = 1,M
  307. C(I,J) = C(I,J) + TEMP*A(I,L)
  308. 180 CONTINUE
  309. END IF
  310. 190 CONTINUE
  311. 200 CONTINUE
  312. ELSE
  313. *
  314. * Form C := alpha*A*B' + beta*C
  315. *
  316. DO 250 J = 1,N
  317. IF (BETA.EQ.ZERO) THEN
  318. DO 210 I = 1,M
  319. C(I,J) = ZERO
  320. 210 CONTINUE
  321. ELSE IF (BETA.NE.ONE) THEN
  322. DO 220 I = 1,M
  323. C(I,J) = BETA*C(I,J)
  324. 220 CONTINUE
  325. END IF
  326. DO 240 L = 1,K
  327. IF (B(J,L).NE.ZERO) THEN
  328. TEMP = ALPHA*B(J,L)
  329. DO 230 I = 1,M
  330. C(I,J) = C(I,J) + TEMP*A(I,L)
  331. 230 CONTINUE
  332. END IF
  333. 240 CONTINUE
  334. 250 CONTINUE
  335. END IF
  336. ELSE IF (CONJA) THEN
  337. IF (CONJB) THEN
  338. *
  339. * Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
  340. *
  341. DO 280 J = 1,N
  342. DO 270 I = 1,M
  343. TEMP = ZERO
  344. DO 260 L = 1,K
  345. TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L))
  346. 260 CONTINUE
  347. IF (BETA.EQ.ZERO) THEN
  348. C(I,J) = ALPHA*TEMP
  349. ELSE
  350. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  351. END IF
  352. 270 CONTINUE
  353. 280 CONTINUE
  354. ELSE
  355. *
  356. * Form C := alpha*conjg( A' )*B' + beta*C
  357. *
  358. DO 310 J = 1,N
  359. DO 300 I = 1,M
  360. TEMP = ZERO
  361. DO 290 L = 1,K
  362. TEMP = TEMP + CONJG(A(L,I))*B(J,L)
  363. 290 CONTINUE
  364. IF (BETA.EQ.ZERO) THEN
  365. C(I,J) = ALPHA*TEMP
  366. ELSE
  367. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  368. END IF
  369. 300 CONTINUE
  370. 310 CONTINUE
  371. END IF
  372. ELSE
  373. IF (CONJB) THEN
  374. *
  375. * Form C := alpha*A'*conjg( B' ) + beta*C
  376. *
  377. DO 340 J = 1,N
  378. DO 330 I = 1,M
  379. TEMP = ZERO
  380. DO 320 L = 1,K
  381. TEMP = TEMP + A(L,I)*CONJG(B(J,L))
  382. 320 CONTINUE
  383. IF (BETA.EQ.ZERO) THEN
  384. C(I,J) = ALPHA*TEMP
  385. ELSE
  386. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  387. END IF
  388. 330 CONTINUE
  389. 340 CONTINUE
  390. ELSE
  391. *
  392. * Form C := alpha*A'*B' + beta*C
  393. *
  394. DO 370 J = 1,N
  395. DO 360 I = 1,M
  396. TEMP = ZERO
  397. DO 350 L = 1,K
  398. TEMP = TEMP + A(L,I)*B(J,L)
  399. 350 CONTINUE
  400. IF (BETA.EQ.ZERO) THEN
  401. C(I,J) = ALPHA*TEMP
  402. ELSE
  403. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  404. END IF
  405. 360 CONTINUE
  406. 370 CONTINUE
  407. END IF
  408. END IF
  409. *
  410. RETURN
  411. *
  412. * End of CGEMM .
  413. *
  414. END