You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsbevx.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
  1. *> \brief <b> DSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSBEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  22. * VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
  23. * IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  28. * DOUBLE PRECISION ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * DOUBLE PRECISION AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
  33. * $ Z( LDZ, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> DSBEVX computes selected eigenvalues and, optionally, eigenvectors
  43. *> of a real symmetric band matrix A. Eigenvalues and eigenvectors can
  44. *> be selected by specifying either a range of values or a range of
  45. *> indices for the desired eigenvalues.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] JOBZ
  52. *> \verbatim
  53. *> JOBZ is CHARACTER*1
  54. *> = 'N': Compute eigenvalues only;
  55. *> = 'V': Compute eigenvalues and eigenvectors.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] RANGE
  59. *> \verbatim
  60. *> RANGE is CHARACTER*1
  61. *> = 'A': all eigenvalues will be found;
  62. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  63. *> will be found;
  64. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] UPLO
  68. *> \verbatim
  69. *> UPLO is CHARACTER*1
  70. *> = 'U': Upper triangle of A is stored;
  71. *> = 'L': Lower triangle of A is stored.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> The order of the matrix A. N >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] KD
  81. *> \verbatim
  82. *> KD is INTEGER
  83. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  84. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] AB
  88. *> \verbatim
  89. *> AB is DOUBLE PRECISION array, dimension (LDAB, N)
  90. *> On entry, the upper or lower triangle of the symmetric band
  91. *> matrix A, stored in the first KD+1 rows of the array. The
  92. *> j-th column of A is stored in the j-th column of the array AB
  93. *> as follows:
  94. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  95. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  96. *>
  97. *> On exit, AB is overwritten by values generated during the
  98. *> reduction to tridiagonal form. If UPLO = 'U', the first
  99. *> superdiagonal and the diagonal of the tridiagonal matrix T
  100. *> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
  101. *> the diagonal and first subdiagonal of T are returned in the
  102. *> first two rows of AB.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDAB
  106. *> \verbatim
  107. *> LDAB is INTEGER
  108. *> The leading dimension of the array AB. LDAB >= KD + 1.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] Q
  112. *> \verbatim
  113. *> Q is DOUBLE PRECISION array, dimension (LDQ, N)
  114. *> If JOBZ = 'V', the N-by-N orthogonal matrix used in the
  115. *> reduction to tridiagonal form.
  116. *> If JOBZ = 'N', the array Q is not referenced.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDQ
  120. *> \verbatim
  121. *> LDQ is INTEGER
  122. *> The leading dimension of the array Q. If JOBZ = 'V', then
  123. *> LDQ >= max(1,N).
  124. *> \endverbatim
  125. *>
  126. *> \param[in] VL
  127. *> \verbatim
  128. *> VL is DOUBLE PRECISION
  129. *> If RANGE='V', the lower bound of the interval to
  130. *> be searched for eigenvalues. VL < VU.
  131. *> Not referenced if RANGE = 'A' or 'I'.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] VU
  135. *> \verbatim
  136. *> VU is DOUBLE PRECISION
  137. *> If RANGE='V', the upper bound of the interval to
  138. *> be searched for eigenvalues. VL < VU.
  139. *> Not referenced if RANGE = 'A' or 'I'.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] IL
  143. *> \verbatim
  144. *> IL is INTEGER
  145. *> If RANGE='I', the index of the
  146. *> smallest eigenvalue to be returned.
  147. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  148. *> Not referenced if RANGE = 'A' or 'V'.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] IU
  152. *> \verbatim
  153. *> IU is INTEGER
  154. *> If RANGE='I', the index of the
  155. *> largest eigenvalue to be returned.
  156. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  157. *> Not referenced if RANGE = 'A' or 'V'.
  158. *> \endverbatim
  159. *>
  160. *> \param[in] ABSTOL
  161. *> \verbatim
  162. *> ABSTOL is DOUBLE PRECISION
  163. *> The absolute error tolerance for the eigenvalues.
  164. *> An approximate eigenvalue is accepted as converged
  165. *> when it is determined to lie in an interval [a,b]
  166. *> of width less than or equal to
  167. *>
  168. *> ABSTOL + EPS * max( |a|,|b| ) ,
  169. *>
  170. *> where EPS is the machine precision. If ABSTOL is less than
  171. *> or equal to zero, then EPS*|T| will be used in its place,
  172. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  173. *> by reducing AB to tridiagonal form.
  174. *>
  175. *> Eigenvalues will be computed most accurately when ABSTOL is
  176. *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  177. *> If this routine returns with INFO>0, indicating that some
  178. *> eigenvectors did not converge, try setting ABSTOL to
  179. *> 2*DLAMCH('S').
  180. *>
  181. *> See "Computing Small Singular Values of Bidiagonal Matrices
  182. *> with Guaranteed High Relative Accuracy," by Demmel and
  183. *> Kahan, LAPACK Working Note #3.
  184. *> \endverbatim
  185. *>
  186. *> \param[out] M
  187. *> \verbatim
  188. *> M is INTEGER
  189. *> The total number of eigenvalues found. 0 <= M <= N.
  190. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  191. *> \endverbatim
  192. *>
  193. *> \param[out] W
  194. *> \verbatim
  195. *> W is DOUBLE PRECISION array, dimension (N)
  196. *> The first M elements contain the selected eigenvalues in
  197. *> ascending order.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] Z
  201. *> \verbatim
  202. *> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  203. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  204. *> contain the orthonormal eigenvectors of the matrix A
  205. *> corresponding to the selected eigenvalues, with the i-th
  206. *> column of Z holding the eigenvector associated with W(i).
  207. *> If an eigenvector fails to converge, then that column of Z
  208. *> contains the latest approximation to the eigenvector, and the
  209. *> index of the eigenvector is returned in IFAIL.
  210. *> If JOBZ = 'N', then Z is not referenced.
  211. *> Note: the user must ensure that at least max(1,M) columns are
  212. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  213. *> is not known in advance and an upper bound must be used.
  214. *> \endverbatim
  215. *>
  216. *> \param[in] LDZ
  217. *> \verbatim
  218. *> LDZ is INTEGER
  219. *> The leading dimension of the array Z. LDZ >= 1, and if
  220. *> JOBZ = 'V', LDZ >= max(1,N).
  221. *> \endverbatim
  222. *>
  223. *> \param[out] WORK
  224. *> \verbatim
  225. *> WORK is DOUBLE PRECISION array, dimension (7*N)
  226. *> \endverbatim
  227. *>
  228. *> \param[out] IWORK
  229. *> \verbatim
  230. *> IWORK is INTEGER array, dimension (5*N)
  231. *> \endverbatim
  232. *>
  233. *> \param[out] IFAIL
  234. *> \verbatim
  235. *> IFAIL is INTEGER array, dimension (N)
  236. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  237. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  238. *> indices of the eigenvectors that failed to converge.
  239. *> If JOBZ = 'N', then IFAIL is not referenced.
  240. *> \endverbatim
  241. *>
  242. *> \param[out] INFO
  243. *> \verbatim
  244. *> INFO is INTEGER
  245. *> = 0: successful exit.
  246. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  247. *> > 0: if INFO = i, then i eigenvectors failed to converge.
  248. *> Their indices are stored in array IFAIL.
  249. *> \endverbatim
  250. *
  251. * Authors:
  252. * ========
  253. *
  254. *> \author Univ. of Tennessee
  255. *> \author Univ. of California Berkeley
  256. *> \author Univ. of Colorado Denver
  257. *> \author NAG Ltd.
  258. *
  259. *> \date June 2016
  260. *
  261. *> \ingroup doubleOTHEReigen
  262. *
  263. * =====================================================================
  264. SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  265. $ VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
  266. $ IFAIL, INFO )
  267. *
  268. * -- LAPACK driver routine (version 3.7.0) --
  269. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  270. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  271. * June 2016
  272. *
  273. * .. Scalar Arguments ..
  274. CHARACTER JOBZ, RANGE, UPLO
  275. INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  276. DOUBLE PRECISION ABSTOL, VL, VU
  277. * ..
  278. * .. Array Arguments ..
  279. INTEGER IFAIL( * ), IWORK( * )
  280. DOUBLE PRECISION AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
  281. $ Z( LDZ, * )
  282. * ..
  283. *
  284. * =====================================================================
  285. *
  286. * .. Parameters ..
  287. DOUBLE PRECISION ZERO, ONE
  288. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  289. * ..
  290. * .. Local Scalars ..
  291. LOGICAL ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  292. CHARACTER ORDER
  293. INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  294. $ INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ,
  295. $ NSPLIT
  296. DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  297. $ SIGMA, SMLNUM, TMP1, VLL, VUU
  298. * ..
  299. * .. External Functions ..
  300. LOGICAL LSAME
  301. DOUBLE PRECISION DLAMCH, DLANSB
  302. EXTERNAL LSAME, DLAMCH, DLANSB
  303. * ..
  304. * .. External Subroutines ..
  305. EXTERNAL DCOPY, DGEMV, DLACPY, DLASCL, DSBTRD, DSCAL,
  306. $ DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  307. * ..
  308. * .. Intrinsic Functions ..
  309. INTRINSIC MAX, MIN, SQRT
  310. * ..
  311. * .. Executable Statements ..
  312. *
  313. * Test the input parameters.
  314. *
  315. WANTZ = LSAME( JOBZ, 'V' )
  316. ALLEIG = LSAME( RANGE, 'A' )
  317. VALEIG = LSAME( RANGE, 'V' )
  318. INDEIG = LSAME( RANGE, 'I' )
  319. LOWER = LSAME( UPLO, 'L' )
  320. *
  321. INFO = 0
  322. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  323. INFO = -1
  324. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  325. INFO = -2
  326. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  327. INFO = -3
  328. ELSE IF( N.LT.0 ) THEN
  329. INFO = -4
  330. ELSE IF( KD.LT.0 ) THEN
  331. INFO = -5
  332. ELSE IF( LDAB.LT.KD+1 ) THEN
  333. INFO = -7
  334. ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  335. INFO = -9
  336. ELSE
  337. IF( VALEIG ) THEN
  338. IF( N.GT.0 .AND. VU.LE.VL )
  339. $ INFO = -11
  340. ELSE IF( INDEIG ) THEN
  341. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  342. INFO = -12
  343. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  344. INFO = -13
  345. END IF
  346. END IF
  347. END IF
  348. IF( INFO.EQ.0 ) THEN
  349. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  350. $ INFO = -18
  351. END IF
  352. *
  353. IF( INFO.NE.0 ) THEN
  354. CALL XERBLA( 'DSBEVX', -INFO )
  355. RETURN
  356. END IF
  357. *
  358. * Quick return if possible
  359. *
  360. M = 0
  361. IF( N.EQ.0 )
  362. $ RETURN
  363. *
  364. IF( N.EQ.1 ) THEN
  365. M = 1
  366. IF( LOWER ) THEN
  367. TMP1 = AB( 1, 1 )
  368. ELSE
  369. TMP1 = AB( KD+1, 1 )
  370. END IF
  371. IF( VALEIG ) THEN
  372. IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  373. $ M = 0
  374. END IF
  375. IF( M.EQ.1 ) THEN
  376. W( 1 ) = TMP1
  377. IF( WANTZ )
  378. $ Z( 1, 1 ) = ONE
  379. END IF
  380. RETURN
  381. END IF
  382. *
  383. * Get machine constants.
  384. *
  385. SAFMIN = DLAMCH( 'Safe minimum' )
  386. EPS = DLAMCH( 'Precision' )
  387. SMLNUM = SAFMIN / EPS
  388. BIGNUM = ONE / SMLNUM
  389. RMIN = SQRT( SMLNUM )
  390. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  391. *
  392. * Scale matrix to allowable range, if necessary.
  393. *
  394. ISCALE = 0
  395. ABSTLL = ABSTOL
  396. IF( VALEIG ) THEN
  397. VLL = VL
  398. VUU = VU
  399. ELSE
  400. VLL = ZERO
  401. VUU = ZERO
  402. END IF
  403. ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
  404. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  405. ISCALE = 1
  406. SIGMA = RMIN / ANRM
  407. ELSE IF( ANRM.GT.RMAX ) THEN
  408. ISCALE = 1
  409. SIGMA = RMAX / ANRM
  410. END IF
  411. IF( ISCALE.EQ.1 ) THEN
  412. IF( LOWER ) THEN
  413. CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  414. ELSE
  415. CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  416. END IF
  417. IF( ABSTOL.GT.0 )
  418. $ ABSTLL = ABSTOL*SIGMA
  419. IF( VALEIG ) THEN
  420. VLL = VL*SIGMA
  421. VUU = VU*SIGMA
  422. END IF
  423. END IF
  424. *
  425. * Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
  426. *
  427. INDD = 1
  428. INDE = INDD + N
  429. INDWRK = INDE + N
  430. CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, WORK( INDD ),
  431. $ WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  432. *
  433. * If all eigenvalues are desired and ABSTOL is less than or equal
  434. * to zero, then call DSTERF or SSTEQR. If this fails for some
  435. * eigenvalue, then try DSTEBZ.
  436. *
  437. TEST = .FALSE.
  438. IF (INDEIG) THEN
  439. IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  440. TEST = .TRUE.
  441. END IF
  442. END IF
  443. IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  444. CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  445. INDEE = INDWRK + 2*N
  446. IF( .NOT.WANTZ ) THEN
  447. CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  448. CALL DSTERF( N, W, WORK( INDEE ), INFO )
  449. ELSE
  450. CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  451. CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  452. CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  453. $ WORK( INDWRK ), INFO )
  454. IF( INFO.EQ.0 ) THEN
  455. DO 10 I = 1, N
  456. IFAIL( I ) = 0
  457. 10 CONTINUE
  458. END IF
  459. END IF
  460. IF( INFO.EQ.0 ) THEN
  461. M = N
  462. GO TO 30
  463. END IF
  464. INFO = 0
  465. END IF
  466. *
  467. * Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  468. *
  469. IF( WANTZ ) THEN
  470. ORDER = 'B'
  471. ELSE
  472. ORDER = 'E'
  473. END IF
  474. INDIBL = 1
  475. INDISP = INDIBL + N
  476. INDIWO = INDISP + N
  477. CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  478. $ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  479. $ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  480. $ IWORK( INDIWO ), INFO )
  481. *
  482. IF( WANTZ ) THEN
  483. CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  484. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  485. $ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  486. *
  487. * Apply orthogonal matrix used in reduction to tridiagonal
  488. * form to eigenvectors returned by DSTEIN.
  489. *
  490. DO 20 J = 1, M
  491. CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  492. CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  493. $ Z( 1, J ), 1 )
  494. 20 CONTINUE
  495. END IF
  496. *
  497. * If matrix was scaled, then rescale eigenvalues appropriately.
  498. *
  499. 30 CONTINUE
  500. IF( ISCALE.EQ.1 ) THEN
  501. IF( INFO.EQ.0 ) THEN
  502. IMAX = M
  503. ELSE
  504. IMAX = INFO - 1
  505. END IF
  506. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  507. END IF
  508. *
  509. * If eigenvalues are not in order, then sort them, along with
  510. * eigenvectors.
  511. *
  512. IF( WANTZ ) THEN
  513. DO 50 J = 1, M - 1
  514. I = 0
  515. TMP1 = W( J )
  516. DO 40 JJ = J + 1, M
  517. IF( W( JJ ).LT.TMP1 ) THEN
  518. I = JJ
  519. TMP1 = W( JJ )
  520. END IF
  521. 40 CONTINUE
  522. *
  523. IF( I.NE.0 ) THEN
  524. ITMP1 = IWORK( INDIBL+I-1 )
  525. W( I ) = W( J )
  526. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  527. W( J ) = TMP1
  528. IWORK( INDIBL+J-1 ) = ITMP1
  529. CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  530. IF( INFO.NE.0 ) THEN
  531. ITMP1 = IFAIL( I )
  532. IFAIL( I ) = IFAIL( J )
  533. IFAIL( J ) = ITMP1
  534. END IF
  535. END IF
  536. 50 CONTINUE
  537. END IF
  538. *
  539. RETURN
  540. *
  541. * End of DSBEVX
  542. *
  543. END