You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dspsvx.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. *> \brief <b> DSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSPSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspsvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspsvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspsvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
  22. * LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER FACT, UPLO
  26. * INTEGER INFO, LDB, LDX, N, NRHS
  27. * DOUBLE PRECISION RCOND
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * ), IWORK( * )
  31. * DOUBLE PRECISION AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
  32. * $ FERR( * ), WORK( * ), X( LDX, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> DSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
  42. *> A = L*D*L**T to compute the solution to a real system of linear
  43. *> equations A * X = B, where A is an N-by-N symmetric matrix stored
  44. *> in packed format and X and B are N-by-NRHS matrices.
  45. *>
  46. *> Error bounds on the solution and a condition estimate are also
  47. *> provided.
  48. *> \endverbatim
  49. *
  50. *> \par Description:
  51. * =================
  52. *>
  53. *> \verbatim
  54. *>
  55. *> The following steps are performed:
  56. *>
  57. *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
  58. *> A = U * D * U**T, if UPLO = 'U', or
  59. *> A = L * D * L**T, if UPLO = 'L',
  60. *> where U (or L) is a product of permutation and unit upper (lower)
  61. *> triangular matrices and D is symmetric and block diagonal with
  62. *> 1-by-1 and 2-by-2 diagonal blocks.
  63. *>
  64. *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
  65. *> returns with INFO = i. Otherwise, the factored form of A is used
  66. *> to estimate the condition number of the matrix A. If the
  67. *> reciprocal of the condition number is less than machine precision,
  68. *> INFO = N+1 is returned as a warning, but the routine still goes on
  69. *> to solve for X and compute error bounds as described below.
  70. *>
  71. *> 3. The system of equations is solved for X using the factored form
  72. *> of A.
  73. *>
  74. *> 4. Iterative refinement is applied to improve the computed solution
  75. *> matrix and calculate error bounds and backward error estimates
  76. *> for it.
  77. *> \endverbatim
  78. *
  79. * Arguments:
  80. * ==========
  81. *
  82. *> \param[in] FACT
  83. *> \verbatim
  84. *> FACT is CHARACTER*1
  85. *> Specifies whether or not the factored form of A has been
  86. *> supplied on entry.
  87. *> = 'F': On entry, AFP and IPIV contain the factored form of
  88. *> A. AP, AFP and IPIV will not be modified.
  89. *> = 'N': The matrix A will be copied to AFP and factored.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] UPLO
  93. *> \verbatim
  94. *> UPLO is CHARACTER*1
  95. *> = 'U': Upper triangle of A is stored;
  96. *> = 'L': Lower triangle of A is stored.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] N
  100. *> \verbatim
  101. *> N is INTEGER
  102. *> The number of linear equations, i.e., the order of the
  103. *> matrix A. N >= 0.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] NRHS
  107. *> \verbatim
  108. *> NRHS is INTEGER
  109. *> The number of right hand sides, i.e., the number of columns
  110. *> of the matrices B and X. NRHS >= 0.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] AP
  114. *> \verbatim
  115. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  116. *> The upper or lower triangle of the symmetric matrix A, packed
  117. *> columnwise in a linear array. The j-th column of A is stored
  118. *> in the array AP as follows:
  119. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  120. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  121. *> See below for further details.
  122. *> \endverbatim
  123. *>
  124. *> \param[in,out] AFP
  125. *> \verbatim
  126. *> AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  127. *> If FACT = 'F', then AFP is an input argument and on entry
  128. *> contains the block diagonal matrix D and the multipliers used
  129. *> to obtain the factor U or L from the factorization
  130. *> A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
  131. *> a packed triangular matrix in the same storage format as A.
  132. *>
  133. *> If FACT = 'N', then AFP is an output argument and on exit
  134. *> contains the block diagonal matrix D and the multipliers used
  135. *> to obtain the factor U or L from the factorization
  136. *> A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
  137. *> a packed triangular matrix in the same storage format as A.
  138. *> \endverbatim
  139. *>
  140. *> \param[in,out] IPIV
  141. *> \verbatim
  142. *> IPIV is INTEGER array, dimension (N)
  143. *> If FACT = 'F', then IPIV is an input argument and on entry
  144. *> contains details of the interchanges and the block structure
  145. *> of D, as determined by DSPTRF.
  146. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  147. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  148. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  149. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  150. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  151. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  152. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  153. *>
  154. *> If FACT = 'N', then IPIV is an output argument and on exit
  155. *> contains details of the interchanges and the block structure
  156. *> of D, as determined by DSPTRF.
  157. *> \endverbatim
  158. *>
  159. *> \param[in] B
  160. *> \verbatim
  161. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  162. *> The N-by-NRHS right hand side matrix B.
  163. *> \endverbatim
  164. *>
  165. *> \param[in] LDB
  166. *> \verbatim
  167. *> LDB is INTEGER
  168. *> The leading dimension of the array B. LDB >= max(1,N).
  169. *> \endverbatim
  170. *>
  171. *> \param[out] X
  172. *> \verbatim
  173. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  174. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
  175. *> \endverbatim
  176. *>
  177. *> \param[in] LDX
  178. *> \verbatim
  179. *> LDX is INTEGER
  180. *> The leading dimension of the array X. LDX >= max(1,N).
  181. *> \endverbatim
  182. *>
  183. *> \param[out] RCOND
  184. *> \verbatim
  185. *> RCOND is DOUBLE PRECISION
  186. *> The estimate of the reciprocal condition number of the matrix
  187. *> A. If RCOND is less than the machine precision (in
  188. *> particular, if RCOND = 0), the matrix is singular to working
  189. *> precision. This condition is indicated by a return code of
  190. *> INFO > 0.
  191. *> \endverbatim
  192. *>
  193. *> \param[out] FERR
  194. *> \verbatim
  195. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  196. *> The estimated forward error bound for each solution vector
  197. *> X(j) (the j-th column of the solution matrix X).
  198. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  199. *> is an estimated upper bound for the magnitude of the largest
  200. *> element in (X(j) - XTRUE) divided by the magnitude of the
  201. *> largest element in X(j). The estimate is as reliable as
  202. *> the estimate for RCOND, and is almost always a slight
  203. *> overestimate of the true error.
  204. *> \endverbatim
  205. *>
  206. *> \param[out] BERR
  207. *> \verbatim
  208. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  209. *> The componentwise relative backward error of each solution
  210. *> vector X(j) (i.e., the smallest relative change in
  211. *> any element of A or B that makes X(j) an exact solution).
  212. *> \endverbatim
  213. *>
  214. *> \param[out] WORK
  215. *> \verbatim
  216. *> WORK is DOUBLE PRECISION array, dimension (3*N)
  217. *> \endverbatim
  218. *>
  219. *> \param[out] IWORK
  220. *> \verbatim
  221. *> IWORK is INTEGER array, dimension (N)
  222. *> \endverbatim
  223. *>
  224. *> \param[out] INFO
  225. *> \verbatim
  226. *> INFO is INTEGER
  227. *> = 0: successful exit
  228. *> < 0: if INFO = -i, the i-th argument had an illegal value
  229. *> > 0: if INFO = i, and i is
  230. *> <= N: D(i,i) is exactly zero. The factorization
  231. *> has been completed but the factor D is exactly
  232. *> singular, so the solution and error bounds could
  233. *> not be computed. RCOND = 0 is returned.
  234. *> = N+1: D is nonsingular, but RCOND is less than machine
  235. *> precision, meaning that the matrix is singular
  236. *> to working precision. Nevertheless, the
  237. *> solution and error bounds are computed because
  238. *> there are a number of situations where the
  239. *> computed solution can be more accurate than the
  240. *> value of RCOND would suggest.
  241. *> \endverbatim
  242. *
  243. * Authors:
  244. * ========
  245. *
  246. *> \author Univ. of Tennessee
  247. *> \author Univ. of California Berkeley
  248. *> \author Univ. of Colorado Denver
  249. *> \author NAG Ltd.
  250. *
  251. *> \ingroup doubleOTHERsolve
  252. *
  253. *> \par Further Details:
  254. * =====================
  255. *>
  256. *> \verbatim
  257. *>
  258. *> The packed storage scheme is illustrated by the following example
  259. *> when N = 4, UPLO = 'U':
  260. *>
  261. *> Two-dimensional storage of the symmetric matrix A:
  262. *>
  263. *> a11 a12 a13 a14
  264. *> a22 a23 a24
  265. *> a33 a34 (aij = aji)
  266. *> a44
  267. *>
  268. *> Packed storage of the upper triangle of A:
  269. *>
  270. *> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
  271. *> \endverbatim
  272. *>
  273. * =====================================================================
  274. SUBROUTINE DSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
  275. $ LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
  276. *
  277. * -- LAPACK driver routine --
  278. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  279. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  280. *
  281. * .. Scalar Arguments ..
  282. CHARACTER FACT, UPLO
  283. INTEGER INFO, LDB, LDX, N, NRHS
  284. DOUBLE PRECISION RCOND
  285. * ..
  286. * .. Array Arguments ..
  287. INTEGER IPIV( * ), IWORK( * )
  288. DOUBLE PRECISION AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
  289. $ FERR( * ), WORK( * ), X( LDX, * )
  290. * ..
  291. *
  292. * =====================================================================
  293. *
  294. * .. Parameters ..
  295. DOUBLE PRECISION ZERO
  296. PARAMETER ( ZERO = 0.0D+0 )
  297. * ..
  298. * .. Local Scalars ..
  299. LOGICAL NOFACT
  300. DOUBLE PRECISION ANORM
  301. * ..
  302. * .. External Functions ..
  303. LOGICAL LSAME
  304. DOUBLE PRECISION DLAMCH, DLANSP
  305. EXTERNAL LSAME, DLAMCH, DLANSP
  306. * ..
  307. * .. External Subroutines ..
  308. EXTERNAL DCOPY, DLACPY, DSPCON, DSPRFS, DSPTRF, DSPTRS,
  309. $ XERBLA
  310. * ..
  311. * .. Intrinsic Functions ..
  312. INTRINSIC MAX
  313. * ..
  314. * .. Executable Statements ..
  315. *
  316. * Test the input parameters.
  317. *
  318. INFO = 0
  319. NOFACT = LSAME( FACT, 'N' )
  320. IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
  321. INFO = -1
  322. ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  323. $ THEN
  324. INFO = -2
  325. ELSE IF( N.LT.0 ) THEN
  326. INFO = -3
  327. ELSE IF( NRHS.LT.0 ) THEN
  328. INFO = -4
  329. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  330. INFO = -9
  331. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  332. INFO = -11
  333. END IF
  334. IF( INFO.NE.0 ) THEN
  335. CALL XERBLA( 'DSPSVX', -INFO )
  336. RETURN
  337. END IF
  338. *
  339. IF( NOFACT ) THEN
  340. *
  341. * Compute the factorization A = U*D*U**T or A = L*D*L**T.
  342. *
  343. CALL DCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
  344. CALL DSPTRF( UPLO, N, AFP, IPIV, INFO )
  345. *
  346. * Return if INFO is non-zero.
  347. *
  348. IF( INFO.GT.0 )THEN
  349. RCOND = ZERO
  350. RETURN
  351. END IF
  352. END IF
  353. *
  354. * Compute the norm of the matrix A.
  355. *
  356. ANORM = DLANSP( 'I', UPLO, N, AP, WORK )
  357. *
  358. * Compute the reciprocal of the condition number of A.
  359. *
  360. CALL DSPCON( UPLO, N, AFP, IPIV, ANORM, RCOND, WORK, IWORK, INFO )
  361. *
  362. * Compute the solution vectors X.
  363. *
  364. CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  365. CALL DSPTRS( UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO )
  366. *
  367. * Use iterative refinement to improve the computed solutions and
  368. * compute error bounds and backward error estimates for them.
  369. *
  370. CALL DSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
  371. $ BERR, WORK, IWORK, INFO )
  372. *
  373. * Set INFO = N+1 if the matrix is singular to working precision.
  374. *
  375. IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  376. $ INFO = N + 1
  377. *
  378. RETURN
  379. *
  380. * End of DSPSVX
  381. *
  382. END