|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- *> \brief <b> DGGLSE solves overdetermined or underdetermined systems for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGGLSE + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgglse.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgglse.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgglse.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDB, LWORK, M, N, P
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( * ), D( * ),
- * $ WORK( * ), X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGGLSE solves the linear equality-constrained least squares (LSE)
- *> problem:
- *>
- *> minimize || c - A*x ||_2 subject to B*x = d
- *>
- *> where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
- *> M-vector, and d is a given P-vector. It is assumed that
- *> P <= N <= M+P, and
- *>
- *> rank(B) = P and rank( (A) ) = N.
- *> ( (B) )
- *>
- *> These conditions ensure that the LSE problem has a unique solution,
- *> which is obtained using a generalized RQ factorization of the
- *> matrices (B, A) given by
- *>
- *> B = (0 R)*Q, A = Z*T*Q.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows of the matrix B. 0 <= P <= N <= M+P.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, the elements on and above the diagonal of the array
- *> contain the min(M,N)-by-N upper trapezoidal matrix T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,N)
- *> On entry, the P-by-N matrix B.
- *> On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
- *> contains the P-by-P upper triangular matrix R.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,P).
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (M)
- *> On entry, C contains the right hand side vector for the
- *> least squares part of the LSE problem.
- *> On exit, the residual sum of squares for the solution
- *> is given by the sum of squares of elements N-P+1 to M of
- *> vector C.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (P)
- *> On entry, D contains the right hand side vector for the
- *> constrained equation.
- *> On exit, D is destroyed.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (N)
- *> On exit, X is the solution of the LSE problem.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,M+N+P).
- *> For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
- *> where NB is an upper bound for the optimal blocksizes for
- *> DGEQRF, SGERQF, DORMQR and SORMRQ.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> = 1: the upper triangular factor R associated with B in the
- *> generalized RQ factorization of the pair (B, A) is
- *> singular, so that rank(B) < P; the least squares
- *> solution could not be computed.
- *> = 2: the (N-P) by (N-P) part of the upper trapezoidal factor
- *> T associated with A in the generalized RQ factorization
- *> of the pair (B, A) is singular, so that
- *> rank( (A) ) < N; the least squares solution could not
- *> ( (B) )
- *> be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERsolve
- *
- * =====================================================================
- SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
- $ INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, LWORK, M, N, P
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( * ), D( * ),
- $ WORK( * ), X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
- $ NB4, NR
- * ..
- * .. External Subroutines ..
- EXTERNAL DAXPY, DCOPY, DGEMV, DGGRQF, DORMQR, DORMRQ,
- $ DTRMV, DTRTRS, XERBLA
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC INT, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- MN = MIN( M, N )
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
- INFO = -7
- END IF
- *
- * Calculate workspace
- *
- IF( INFO.EQ.0) THEN
- IF( N.EQ.0 ) THEN
- LWKMIN = 1
- LWKOPT = 1
- ELSE
- NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
- NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
- NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, P, -1 )
- NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
- NB = MAX( NB1, NB2, NB3, NB4 )
- LWKMIN = M + N + P
- LWKOPT = P + MN + MAX( M, N )*NB
- END IF
- WORK( 1 ) = LWKOPT
- *
- IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGGLSE', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Compute the GRQ factorization of matrices B and A:
- *
- * B*Q**T = ( 0 T12 ) P Z**T*A*Q**T = ( R11 R12 ) N-P
- * N-P P ( 0 R22 ) M+P-N
- * N-P P
- *
- * where T12 and R11 are upper triangular, and Q and Z are
- * orthogonal.
- *
- CALL DGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
- $ WORK( P+MN+1 ), LWORK-P-MN, INFO )
- LOPT = INT( WORK( P+MN+1 ) )
- *
- * Update c = Z**T *c = ( c1 ) N-P
- * ( c2 ) M+P-N
- *
- CALL DORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
- $ C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
- LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
- *
- * Solve T12*x2 = d for x2
- *
- IF( P.GT.0 ) THEN
- CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
- $ B( 1, N-P+1 ), LDB, D, P, INFO )
- *
- IF( INFO.GT.0 ) THEN
- INFO = 1
- RETURN
- END IF
- *
- * Put the solution in X
- *
- CALL DCOPY( P, D, 1, X( N-P+1 ), 1 )
- *
- * Update c1
- *
- CALL DGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
- $ D, 1, ONE, C, 1 )
- END IF
- *
- * Solve R11*x1 = c1 for x1
- *
- IF( N.GT.P ) THEN
- CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
- $ A, LDA, C, N-P, INFO )
- *
- IF( INFO.GT.0 ) THEN
- INFO = 2
- RETURN
- END IF
- *
- * Put the solutions in X
- *
- CALL DCOPY( N-P, C, 1, X, 1 )
- END IF
- *
- * Compute the residual vector:
- *
- IF( M.LT.N ) THEN
- NR = M + P - N
- IF( NR.GT.0 )
- $ CALL DGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
- $ LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
- ELSE
- NR = P
- END IF
- IF( NR.GT.0 ) THEN
- CALL DTRMV( 'Upper', 'No transpose', 'Non unit', NR,
- $ A( N-P+1, N-P+1 ), LDA, D, 1 )
- CALL DAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
- END IF
- *
- * Backward transformation x = Q**T*x
- *
- CALL DORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
- $ N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
- WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
- *
- RETURN
- *
- * End of DGGLSE
- *
- END
|