You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chptrs.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. *> \brief \b CHPTRS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHPTRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDB, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX AP( * ), B( LDB, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CHPTRS solves a system of linear equations A*X = B with a complex
  39. *> Hermitian matrix A stored in packed format using the factorization
  40. *> A = U*D*U**H or A = L*D*L**H computed by CHPTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**H;
  52. *> = 'L': Lower triangular, form is A = L*D*L**H.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NRHS
  62. *> \verbatim
  63. *> NRHS is INTEGER
  64. *> The number of right hand sides, i.e., the number of columns
  65. *> of the matrix B. NRHS >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] AP
  69. *> \verbatim
  70. *> AP is COMPLEX array, dimension (N*(N+1)/2)
  71. *> The block diagonal matrix D and the multipliers used to
  72. *> obtain the factor U or L as computed by CHPTRF, stored as a
  73. *> packed triangular matrix.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] IPIV
  77. *> \verbatim
  78. *> IPIV is INTEGER array, dimension (N)
  79. *> Details of the interchanges and the block structure of D
  80. *> as determined by CHPTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[in,out] B
  84. *> \verbatim
  85. *> B is COMPLEX array, dimension (LDB,NRHS)
  86. *> On entry, the right hand side matrix B.
  87. *> On exit, the solution matrix X.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDB
  91. *> \verbatim
  92. *> LDB is INTEGER
  93. *> The leading dimension of the array B. LDB >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[out] INFO
  97. *> \verbatim
  98. *> INFO is INTEGER
  99. *> = 0: successful exit
  100. *> < 0: if INFO = -i, the i-th argument had an illegal value
  101. *> \endverbatim
  102. *
  103. * Authors:
  104. * ========
  105. *
  106. *> \author Univ. of Tennessee
  107. *> \author Univ. of California Berkeley
  108. *> \author Univ. of Colorado Denver
  109. *> \author NAG Ltd.
  110. *
  111. *> \ingroup complexOTHERcomputational
  112. *
  113. * =====================================================================
  114. SUBROUTINE CHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  115. *
  116. * -- LAPACK computational routine --
  117. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  118. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119. *
  120. * .. Scalar Arguments ..
  121. CHARACTER UPLO
  122. INTEGER INFO, LDB, N, NRHS
  123. * ..
  124. * .. Array Arguments ..
  125. INTEGER IPIV( * )
  126. COMPLEX AP( * ), B( LDB, * )
  127. * ..
  128. *
  129. * =====================================================================
  130. *
  131. * .. Parameters ..
  132. COMPLEX ONE
  133. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  134. * ..
  135. * .. Local Scalars ..
  136. LOGICAL UPPER
  137. INTEGER J, K, KC, KP
  138. REAL S
  139. COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
  140. * ..
  141. * .. External Functions ..
  142. LOGICAL LSAME
  143. EXTERNAL LSAME
  144. * ..
  145. * .. External Subroutines ..
  146. EXTERNAL CGEMV, CGERU, CLACGV, CSSCAL, CSWAP, XERBLA
  147. * ..
  148. * .. Intrinsic Functions ..
  149. INTRINSIC CONJG, MAX, REAL
  150. * ..
  151. * .. Executable Statements ..
  152. *
  153. INFO = 0
  154. UPPER = LSAME( UPLO, 'U' )
  155. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  156. INFO = -1
  157. ELSE IF( N.LT.0 ) THEN
  158. INFO = -2
  159. ELSE IF( NRHS.LT.0 ) THEN
  160. INFO = -3
  161. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  162. INFO = -7
  163. END IF
  164. IF( INFO.NE.0 ) THEN
  165. CALL XERBLA( 'CHPTRS', -INFO )
  166. RETURN
  167. END IF
  168. *
  169. * Quick return if possible
  170. *
  171. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  172. $ RETURN
  173. *
  174. IF( UPPER ) THEN
  175. *
  176. * Solve A*X = B, where A = U*D*U**H.
  177. *
  178. * First solve U*D*X = B, overwriting B with X.
  179. *
  180. * K is the main loop index, decreasing from N to 1 in steps of
  181. * 1 or 2, depending on the size of the diagonal blocks.
  182. *
  183. K = N
  184. KC = N*( N+1 ) / 2 + 1
  185. 10 CONTINUE
  186. *
  187. * If K < 1, exit from loop.
  188. *
  189. IF( K.LT.1 )
  190. $ GO TO 30
  191. *
  192. KC = KC - K
  193. IF( IPIV( K ).GT.0 ) THEN
  194. *
  195. * 1 x 1 diagonal block
  196. *
  197. * Interchange rows K and IPIV(K).
  198. *
  199. KP = IPIV( K )
  200. IF( KP.NE.K )
  201. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  202. *
  203. * Multiply by inv(U(K)), where U(K) is the transformation
  204. * stored in column K of A.
  205. *
  206. CALL CGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  207. $ B( 1, 1 ), LDB )
  208. *
  209. * Multiply by the inverse of the diagonal block.
  210. *
  211. S = REAL( ONE ) / REAL( AP( KC+K-1 ) )
  212. CALL CSSCAL( NRHS, S, B( K, 1 ), LDB )
  213. K = K - 1
  214. ELSE
  215. *
  216. * 2 x 2 diagonal block
  217. *
  218. * Interchange rows K-1 and -IPIV(K).
  219. *
  220. KP = -IPIV( K )
  221. IF( KP.NE.K-1 )
  222. $ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  223. *
  224. * Multiply by inv(U(K)), where U(K) is the transformation
  225. * stored in columns K-1 and K of A.
  226. *
  227. CALL CGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  228. $ B( 1, 1 ), LDB )
  229. CALL CGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
  230. $ B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
  231. *
  232. * Multiply by the inverse of the diagonal block.
  233. *
  234. AKM1K = AP( KC+K-2 )
  235. AKM1 = AP( KC-1 ) / AKM1K
  236. AK = AP( KC+K-1 ) / CONJG( AKM1K )
  237. DENOM = AKM1*AK - ONE
  238. DO 20 J = 1, NRHS
  239. BKM1 = B( K-1, J ) / AKM1K
  240. BK = B( K, J ) / CONJG( AKM1K )
  241. B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  242. B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  243. 20 CONTINUE
  244. KC = KC - K + 1
  245. K = K - 2
  246. END IF
  247. *
  248. GO TO 10
  249. 30 CONTINUE
  250. *
  251. * Next solve U**H *X = B, overwriting B with X.
  252. *
  253. * K is the main loop index, increasing from 1 to N in steps of
  254. * 1 or 2, depending on the size of the diagonal blocks.
  255. *
  256. K = 1
  257. KC = 1
  258. 40 CONTINUE
  259. *
  260. * If K > N, exit from loop.
  261. *
  262. IF( K.GT.N )
  263. $ GO TO 50
  264. *
  265. IF( IPIV( K ).GT.0 ) THEN
  266. *
  267. * 1 x 1 diagonal block
  268. *
  269. * Multiply by inv(U**H(K)), where U(K) is the transformation
  270. * stored in column K of A.
  271. *
  272. IF( K.GT.1 ) THEN
  273. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  274. CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  275. $ LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  276. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  277. END IF
  278. *
  279. * Interchange rows K and IPIV(K).
  280. *
  281. KP = IPIV( K )
  282. IF( KP.NE.K )
  283. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  284. KC = KC + K
  285. K = K + 1
  286. ELSE
  287. *
  288. * 2 x 2 diagonal block
  289. *
  290. * Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
  291. * stored in columns K and K+1 of A.
  292. *
  293. IF( K.GT.1 ) THEN
  294. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  295. CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  296. $ LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  297. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  298. *
  299. CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
  300. CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  301. $ LDB, AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
  302. CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
  303. END IF
  304. *
  305. * Interchange rows K and -IPIV(K).
  306. *
  307. KP = -IPIV( K )
  308. IF( KP.NE.K )
  309. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  310. KC = KC + 2*K + 1
  311. K = K + 2
  312. END IF
  313. *
  314. GO TO 40
  315. 50 CONTINUE
  316. *
  317. ELSE
  318. *
  319. * Solve A*X = B, where A = L*D*L**H.
  320. *
  321. * First solve L*D*X = B, overwriting B with X.
  322. *
  323. * K is the main loop index, increasing from 1 to N in steps of
  324. * 1 or 2, depending on the size of the diagonal blocks.
  325. *
  326. K = 1
  327. KC = 1
  328. 60 CONTINUE
  329. *
  330. * If K > N, exit from loop.
  331. *
  332. IF( K.GT.N )
  333. $ GO TO 80
  334. *
  335. IF( IPIV( K ).GT.0 ) THEN
  336. *
  337. * 1 x 1 diagonal block
  338. *
  339. * Interchange rows K and IPIV(K).
  340. *
  341. KP = IPIV( K )
  342. IF( KP.NE.K )
  343. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  344. *
  345. * Multiply by inv(L(K)), where L(K) is the transformation
  346. * stored in column K of A.
  347. *
  348. IF( K.LT.N )
  349. $ CALL CGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
  350. $ LDB, B( K+1, 1 ), LDB )
  351. *
  352. * Multiply by the inverse of the diagonal block.
  353. *
  354. S = REAL( ONE ) / REAL( AP( KC ) )
  355. CALL CSSCAL( NRHS, S, B( K, 1 ), LDB )
  356. KC = KC + N - K + 1
  357. K = K + 1
  358. ELSE
  359. *
  360. * 2 x 2 diagonal block
  361. *
  362. * Interchange rows K+1 and -IPIV(K).
  363. *
  364. KP = -IPIV( K )
  365. IF( KP.NE.K+1 )
  366. $ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  367. *
  368. * Multiply by inv(L(K)), where L(K) is the transformation
  369. * stored in columns K and K+1 of A.
  370. *
  371. IF( K.LT.N-1 ) THEN
  372. CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
  373. $ LDB, B( K+2, 1 ), LDB )
  374. CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
  375. $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  376. END IF
  377. *
  378. * Multiply by the inverse of the diagonal block.
  379. *
  380. AKM1K = AP( KC+1 )
  381. AKM1 = AP( KC ) / CONJG( AKM1K )
  382. AK = AP( KC+N-K+1 ) / AKM1K
  383. DENOM = AKM1*AK - ONE
  384. DO 70 J = 1, NRHS
  385. BKM1 = B( K, J ) / CONJG( AKM1K )
  386. BK = B( K+1, J ) / AKM1K
  387. B( K, J ) = ( AK*BKM1-BK ) / DENOM
  388. B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  389. 70 CONTINUE
  390. KC = KC + 2*( N-K ) + 1
  391. K = K + 2
  392. END IF
  393. *
  394. GO TO 60
  395. 80 CONTINUE
  396. *
  397. * Next solve L**H *X = B, overwriting B with X.
  398. *
  399. * K is the main loop index, decreasing from N to 1 in steps of
  400. * 1 or 2, depending on the size of the diagonal blocks.
  401. *
  402. K = N
  403. KC = N*( N+1 ) / 2 + 1
  404. 90 CONTINUE
  405. *
  406. * If K < 1, exit from loop.
  407. *
  408. IF( K.LT.1 )
  409. $ GO TO 100
  410. *
  411. KC = KC - ( N-K+1 )
  412. IF( IPIV( K ).GT.0 ) THEN
  413. *
  414. * 1 x 1 diagonal block
  415. *
  416. * Multiply by inv(L**H(K)), where L(K) is the transformation
  417. * stored in column K of A.
  418. *
  419. IF( K.LT.N ) THEN
  420. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  421. CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  422. $ B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  423. $ B( K, 1 ), LDB )
  424. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  425. END IF
  426. *
  427. * Interchange rows K and IPIV(K).
  428. *
  429. KP = IPIV( K )
  430. IF( KP.NE.K )
  431. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  432. K = K - 1
  433. ELSE
  434. *
  435. * 2 x 2 diagonal block
  436. *
  437. * Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
  438. * stored in columns K-1 and K of A.
  439. *
  440. IF( K.LT.N ) THEN
  441. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  442. CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  443. $ B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  444. $ B( K, 1 ), LDB )
  445. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  446. *
  447. CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
  448. CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  449. $ B( K+1, 1 ), LDB, AP( KC-( N-K ) ), 1, ONE,
  450. $ B( K-1, 1 ), LDB )
  451. CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
  452. END IF
  453. *
  454. * Interchange rows K and -IPIV(K).
  455. *
  456. KP = -IPIV( K )
  457. IF( KP.NE.K )
  458. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  459. KC = KC - ( N-K+2 )
  460. K = K - 2
  461. END IF
  462. *
  463. GO TO 90
  464. 100 CONTINUE
  465. END IF
  466. *
  467. RETURN
  468. *
  469. * End of CHPTRS
  470. *
  471. END