You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cchkst.f 69 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003
  1. *> \brief \b CCHKST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
  13. * WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
  14. * LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
  15. * INFO )
  16. *
  17. * .. Scalar Arguments ..
  18. * INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
  19. * $ NSIZES, NTYPES
  20. * REAL THRESH
  21. * ..
  22. * .. Array Arguments ..
  23. * LOGICAL DOTYPE( * )
  24. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  25. * REAL D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
  26. * $ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
  27. * $ WA1( * ), WA2( * ), WA3( * ), WR( * )
  28. * COMPLEX A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
  29. * $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CCHKST checks the Hermitian eigenvalue problem routines.
  39. *>
  40. *> CHETRD factors A as U S U* , where * means conjugate transpose,
  41. *> S is real symmetric tridiagonal, and U is unitary.
  42. *> CHETRD can use either just the lower or just the upper triangle
  43. *> of A; CCHKST checks both cases.
  44. *> U is represented as a product of Householder
  45. *> transformations, whose vectors are stored in the first
  46. *> n-1 columns of V, and whose scale factors are in TAU.
  47. *>
  48. *> CHPTRD does the same as CHETRD, except that A and V are stored
  49. *> in "packed" format.
  50. *>
  51. *> CUNGTR constructs the matrix U from the contents of V and TAU.
  52. *>
  53. *> CUPGTR constructs the matrix U from the contents of VP and TAU.
  54. *>
  55. *> CSTEQR factors S as Z D1 Z* , where Z is the unitary
  56. *> matrix of eigenvectors and D1 is a diagonal matrix with
  57. *> the eigenvalues on the diagonal. D2 is the matrix of
  58. *> eigenvalues computed when Z is not computed.
  59. *>
  60. *> SSTERF computes D3, the matrix of eigenvalues, by the
  61. *> PWK method, which does not yield eigenvectors.
  62. *>
  63. *> CPTEQR factors S as Z4 D4 Z4* , for a
  64. *> Hermitian positive definite tridiagonal matrix.
  65. *> D5 is the matrix of eigenvalues computed when Z is not
  66. *> computed.
  67. *>
  68. *> SSTEBZ computes selected eigenvalues. WA1, WA2, and
  69. *> WA3 will denote eigenvalues computed to high
  70. *> absolute accuracy, with different range options.
  71. *> WR will denote eigenvalues computed to high relative
  72. *> accuracy.
  73. *>
  74. *> CSTEIN computes Y, the eigenvectors of S, given the
  75. *> eigenvalues.
  76. *>
  77. *> CSTEDC factors S as Z D1 Z* , where Z is the unitary
  78. *> matrix of eigenvectors and D1 is a diagonal matrix with
  79. *> the eigenvalues on the diagonal ('I' option). It may also
  80. *> update an input unitary matrix, usually the output
  81. *> from CHETRD/CUNGTR or CHPTRD/CUPGTR ('V' option). It may
  82. *> also just compute eigenvalues ('N' option).
  83. *>
  84. *> CSTEMR factors S as Z D1 Z* , where Z is the unitary
  85. *> matrix of eigenvectors and D1 is a diagonal matrix with
  86. *> the eigenvalues on the diagonal ('I' option). CSTEMR
  87. *> uses the Relatively Robust Representation whenever possible.
  88. *>
  89. *> When CCHKST is called, a number of matrix "sizes" ("n's") and a
  90. *> number of matrix "types" are specified. For each size ("n")
  91. *> and each type of matrix, one matrix will be generated and used
  92. *> to test the Hermitian eigenroutines. For each matrix, a number
  93. *> of tests will be performed:
  94. *>
  95. *> (1) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='U', ... )
  96. *>
  97. *> (2) | I - UV* | / ( n ulp ) CUNGTR( UPLO='U', ... )
  98. *>
  99. *> (3) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='L', ... )
  100. *>
  101. *> (4) | I - UV* | / ( n ulp ) CUNGTR( UPLO='L', ... )
  102. *>
  103. *> (5-8) Same as 1-4, but for CHPTRD and CUPGTR.
  104. *>
  105. *> (9) | S - Z D Z* | / ( |S| n ulp ) CSTEQR('V',...)
  106. *>
  107. *> (10) | I - ZZ* | / ( n ulp ) CSTEQR('V',...)
  108. *>
  109. *> (11) | D1 - D2 | / ( |D1| ulp ) CSTEQR('N',...)
  110. *>
  111. *> (12) | D1 - D3 | / ( |D1| ulp ) SSTERF
  112. *>
  113. *> (13) 0 if the true eigenvalues (computed by sturm count)
  114. *> of S are within THRESH of
  115. *> those in D1. 2*THRESH if they are not. (Tested using
  116. *> SSTECH)
  117. *>
  118. *> For S positive definite,
  119. *>
  120. *> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) CPTEQR('V',...)
  121. *>
  122. *> (15) | I - Z4 Z4* | / ( n ulp ) CPTEQR('V',...)
  123. *>
  124. *> (16) | D4 - D5 | / ( 100 |D4| ulp ) CPTEQR('N',...)
  125. *>
  126. *> When S is also diagonally dominant by the factor gamma < 1,
  127. *>
  128. *> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
  129. *> i
  130. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  131. *> SSTEBZ( 'A', 'E', ...)
  132. *>
  133. *> (18) | WA1 - D3 | / ( |D3| ulp ) SSTEBZ( 'A', 'E', ...)
  134. *>
  135. *> (19) ( max { min | WA2(i)-WA3(j) | } +
  136. *> i j
  137. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  138. *> i j
  139. *> SSTEBZ( 'I', 'E', ...)
  140. *>
  141. *> (20) | S - Y WA1 Y* | / ( |S| n ulp ) SSTEBZ, CSTEIN
  142. *>
  143. *> (21) | I - Y Y* | / ( n ulp ) SSTEBZ, CSTEIN
  144. *>
  145. *> (22) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('I')
  146. *>
  147. *> (23) | I - ZZ* | / ( n ulp ) CSTEDC('I')
  148. *>
  149. *> (24) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('V')
  150. *>
  151. *> (25) | I - ZZ* | / ( n ulp ) CSTEDC('V')
  152. *>
  153. *> (26) | D1 - D2 | / ( |D1| ulp ) CSTEDC('V') and
  154. *> CSTEDC('N')
  155. *>
  156. *> Test 27 is disabled at the moment because CSTEMR does not
  157. *> guarantee high relatvie accuracy.
  158. *>
  159. *> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
  160. *> i
  161. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  162. *> CSTEMR('V', 'A')
  163. *>
  164. *> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
  165. *> i
  166. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  167. *> CSTEMR('V', 'I')
  168. *>
  169. *> Tests 29 through 34 are disable at present because CSTEMR
  170. *> does not handle partial specturm requests.
  171. *>
  172. *> (29) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'I')
  173. *>
  174. *> (30) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'I')
  175. *>
  176. *> (31) ( max { min | WA2(i)-WA3(j) | } +
  177. *> i j
  178. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  179. *> i j
  180. *> CSTEMR('N', 'I') vs. CSTEMR('V', 'I')
  181. *>
  182. *> (32) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'V')
  183. *>
  184. *> (33) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'V')
  185. *>
  186. *> (34) ( max { min | WA2(i)-WA3(j) | } +
  187. *> i j
  188. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  189. *> i j
  190. *> CSTEMR('N', 'V') vs. CSTEMR('V', 'V')
  191. *>
  192. *> (35) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'A')
  193. *>
  194. *> (36) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'A')
  195. *>
  196. *> (37) ( max { min | WA2(i)-WA3(j) | } +
  197. *> i j
  198. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  199. *> i j
  200. *> CSTEMR('N', 'A') vs. CSTEMR('V', 'A')
  201. *>
  202. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  203. *> each element NN(j) specifies one size.
  204. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  205. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  206. *> Currently, the list of possible types is:
  207. *>
  208. *> (1) The zero matrix.
  209. *> (2) The identity matrix.
  210. *>
  211. *> (3) A diagonal matrix with evenly spaced entries
  212. *> 1, ..., ULP and random signs.
  213. *> (ULP = (first number larger than 1) - 1 )
  214. *> (4) A diagonal matrix with geometrically spaced entries
  215. *> 1, ..., ULP and random signs.
  216. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  217. *> and random signs.
  218. *>
  219. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  220. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  221. *>
  222. *> (8) A matrix of the form U* D U, where U is unitary and
  223. *> D has evenly spaced entries 1, ..., ULP with random signs
  224. *> on the diagonal.
  225. *>
  226. *> (9) A matrix of the form U* D U, where U is unitary and
  227. *> D has geometrically spaced entries 1, ..., ULP with random
  228. *> signs on the diagonal.
  229. *>
  230. *> (10) A matrix of the form U* D U, where U is unitary and
  231. *> D has "clustered" entries 1, ULP,..., ULP with random
  232. *> signs on the diagonal.
  233. *>
  234. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  235. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  236. *>
  237. *> (13) Hermitian matrix with random entries chosen from (-1,1).
  238. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  239. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  240. *> (16) Same as (8), but diagonal elements are all positive.
  241. *> (17) Same as (9), but diagonal elements are all positive.
  242. *> (18) Same as (10), but diagonal elements are all positive.
  243. *> (19) Same as (16), but multiplied by SQRT( overflow threshold )
  244. *> (20) Same as (16), but multiplied by SQRT( underflow threshold )
  245. *> (21) A diagonally dominant tridiagonal matrix with geometrically
  246. *> spaced diagonal entries 1, ..., ULP.
  247. *> \endverbatim
  248. *
  249. * Arguments:
  250. * ==========
  251. *
  252. *> \param[in] NSIZES
  253. *> \verbatim
  254. *> NSIZES is INTEGER
  255. *> The number of sizes of matrices to use. If it is zero,
  256. *> CCHKST does nothing. It must be at least zero.
  257. *> \endverbatim
  258. *>
  259. *> \param[in] NN
  260. *> \verbatim
  261. *> NN is INTEGER array, dimension (NSIZES)
  262. *> An array containing the sizes to be used for the matrices.
  263. *> Zero values will be skipped. The values must be at least
  264. *> zero.
  265. *> \endverbatim
  266. *>
  267. *> \param[in] NTYPES
  268. *> \verbatim
  269. *> NTYPES is INTEGER
  270. *> The number of elements in DOTYPE. If it is zero, CCHKST
  271. *> does nothing. It must be at least zero. If it is MAXTYP+1
  272. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  273. *> defined, which is to use whatever matrix is in A. This
  274. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  275. *> DOTYPE(MAXTYP+1) is .TRUE. .
  276. *> \endverbatim
  277. *>
  278. *> \param[in] DOTYPE
  279. *> \verbatim
  280. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  281. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  282. *> matrix of that size and of type j will be generated.
  283. *> If NTYPES is smaller than the maximum number of types
  284. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  285. *> MAXTYP will not be generated. If NTYPES is larger
  286. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  287. *> will be ignored.
  288. *> \endverbatim
  289. *>
  290. *> \param[in,out] ISEED
  291. *> \verbatim
  292. *> ISEED is INTEGER array, dimension (4)
  293. *> On entry ISEED specifies the seed of the random number
  294. *> generator. The array elements should be between 0 and 4095;
  295. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  296. *> be odd. The random number generator uses a linear
  297. *> congruential sequence limited to small integers, and so
  298. *> should produce machine independent random numbers. The
  299. *> values of ISEED are changed on exit, and can be used in the
  300. *> next call to CCHKST to continue the same random number
  301. *> sequence.
  302. *> \endverbatim
  303. *>
  304. *> \param[in] THRESH
  305. *> \verbatim
  306. *> THRESH is REAL
  307. *> A test will count as "failed" if the "error", computed as
  308. *> described above, exceeds THRESH. Note that the error
  309. *> is scaled to be O(1), so THRESH should be a reasonably
  310. *> small multiple of 1, e.g., 10 or 100. In particular,
  311. *> it should not depend on the precision (single vs. double)
  312. *> or the size of the matrix. It must be at least zero.
  313. *> \endverbatim
  314. *>
  315. *> \param[in] NOUNIT
  316. *> \verbatim
  317. *> NOUNIT is INTEGER
  318. *> The FORTRAN unit number for printing out error messages
  319. *> (e.g., if a routine returns IINFO not equal to 0.)
  320. *> \endverbatim
  321. *>
  322. *> \param[in,out] A
  323. *> \verbatim
  324. *> A is COMPLEX array of
  325. *> dimension ( LDA , max(NN) )
  326. *> Used to hold the matrix whose eigenvalues are to be
  327. *> computed. On exit, A contains the last matrix actually
  328. *> used.
  329. *> \endverbatim
  330. *>
  331. *> \param[in] LDA
  332. *> \verbatim
  333. *> LDA is INTEGER
  334. *> The leading dimension of A. It must be at
  335. *> least 1 and at least max( NN ).
  336. *> \endverbatim
  337. *>
  338. *> \param[out] AP
  339. *> \verbatim
  340. *> AP is COMPLEX array of
  341. *> dimension( max(NN)*max(NN+1)/2 )
  342. *> The matrix A stored in packed format.
  343. *> \endverbatim
  344. *>
  345. *> \param[out] SD
  346. *> \verbatim
  347. *> SD is REAL array of
  348. *> dimension( max(NN) )
  349. *> The diagonal of the tridiagonal matrix computed by CHETRD.
  350. *> On exit, SD and SE contain the tridiagonal form of the
  351. *> matrix in A.
  352. *> \endverbatim
  353. *>
  354. *> \param[out] SE
  355. *> \verbatim
  356. *> SE is REAL array of
  357. *> dimension( max(NN) )
  358. *> The off-diagonal of the tridiagonal matrix computed by
  359. *> CHETRD. On exit, SD and SE contain the tridiagonal form of
  360. *> the matrix in A.
  361. *> \endverbatim
  362. *>
  363. *> \param[out] D1
  364. *> \verbatim
  365. *> D1 is REAL array of
  366. *> dimension( max(NN) )
  367. *> The eigenvalues of A, as computed by CSTEQR simlutaneously
  368. *> with Z. On exit, the eigenvalues in D1 correspond with the
  369. *> matrix in A.
  370. *> \endverbatim
  371. *>
  372. *> \param[out] D2
  373. *> \verbatim
  374. *> D2 is REAL array of
  375. *> dimension( max(NN) )
  376. *> The eigenvalues of A, as computed by CSTEQR if Z is not
  377. *> computed. On exit, the eigenvalues in D2 correspond with
  378. *> the matrix in A.
  379. *> \endverbatim
  380. *>
  381. *> \param[out] D3
  382. *> \verbatim
  383. *> D3 is REAL array of
  384. *> dimension( max(NN) )
  385. *> The eigenvalues of A, as computed by SSTERF. On exit, the
  386. *> eigenvalues in D3 correspond with the matrix in A.
  387. *> \endverbatim
  388. *>
  389. *> \param[out] D4
  390. *> \verbatim
  391. *> D4 is REAL array of
  392. *> dimension( max(NN) )
  393. *> The eigenvalues of A, as computed by CPTEQR(V).
  394. *> ZPTEQR factors S as Z4 D4 Z4*
  395. *> On exit, the eigenvalues in D4 correspond with the matrix in A.
  396. *> \endverbatim
  397. *>
  398. *> \param[out] D5
  399. *> \verbatim
  400. *> D5 is REAL array of
  401. *> dimension( max(NN) )
  402. *> The eigenvalues of A, as computed by ZPTEQR(N)
  403. *> when Z is not computed. On exit, the
  404. *> eigenvalues in D4 correspond with the matrix in A.
  405. *> \endverbatim
  406. *>
  407. *> \param[out] WA1
  408. *> \verbatim
  409. *> WA1 is REAL array of
  410. *> dimension( max(NN) )
  411. *> All eigenvalues of A, computed to high
  412. *> absolute accuracy, with different range options.
  413. *> as computed by SSTEBZ.
  414. *> \endverbatim
  415. *>
  416. *> \param[out] WA2
  417. *> \verbatim
  418. *> WA2 is REAL array of
  419. *> dimension( max(NN) )
  420. *> Selected eigenvalues of A, computed to high
  421. *> absolute accuracy, with different range options.
  422. *> as computed by SSTEBZ.
  423. *> Choose random values for IL and IU, and ask for the
  424. *> IL-th through IU-th eigenvalues.
  425. *> \endverbatim
  426. *>
  427. *> \param[out] WA3
  428. *> \verbatim
  429. *> WA3 is REAL array of
  430. *> dimension( max(NN) )
  431. *> Selected eigenvalues of A, computed to high
  432. *> absolute accuracy, with different range options.
  433. *> as computed by SSTEBZ.
  434. *> Determine the values VL and VU of the IL-th and IU-th
  435. *> eigenvalues and ask for all eigenvalues in this range.
  436. *> \endverbatim
  437. *>
  438. *> \param[out] WR
  439. *> \verbatim
  440. *> WR is DOUBLE PRECISION array of
  441. *> dimension( max(NN) )
  442. *> All eigenvalues of A, computed to high
  443. *> absolute accuracy, with different options.
  444. *> as computed by DSTEBZ.
  445. *> \endverbatim
  446. *>
  447. *> \param[out] U
  448. *> \verbatim
  449. *> U is COMPLEX array of
  450. *> dimension( LDU, max(NN) ).
  451. *> The unitary matrix computed by CHETRD + CUNGTR.
  452. *> \endverbatim
  453. *>
  454. *> \param[in] LDU
  455. *> \verbatim
  456. *> LDU is INTEGER
  457. *> The leading dimension of U, Z, and V. It must be at least 1
  458. *> and at least max( NN ).
  459. *> \endverbatim
  460. *>
  461. *> \param[out] V
  462. *> \verbatim
  463. *> V is COMPLEX array of
  464. *> dimension( LDU, max(NN) ).
  465. *> The Housholder vectors computed by CHETRD in reducing A to
  466. *> tridiagonal form. The vectors computed with UPLO='U' are
  467. *> in the upper triangle, and the vectors computed with UPLO='L'
  468. *> are in the lower triangle. (As described in CHETRD, the
  469. *> sub- and superdiagonal are not set to 1, although the
  470. *> true Householder vector has a 1 in that position. The
  471. *> routines that use V, such as CUNGTR, set those entries to
  472. *> 1 before using them, and then restore them later.)
  473. *> \endverbatim
  474. *>
  475. *> \param[out] VP
  476. *> \verbatim
  477. *> VP is COMPLEX array of
  478. *> dimension( max(NN)*max(NN+1)/2 )
  479. *> The matrix V stored in packed format.
  480. *> \endverbatim
  481. *>
  482. *> \param[out] TAU
  483. *> \verbatim
  484. *> TAU is COMPLEX array of
  485. *> dimension( max(NN) )
  486. *> The Householder factors computed by CHETRD in reducing A
  487. *> to tridiagonal form.
  488. *> \endverbatim
  489. *>
  490. *> \param[out] Z
  491. *> \verbatim
  492. *> Z is COMPLEX array of
  493. *> dimension( LDU, max(NN) ).
  494. *> The unitary matrix of eigenvectors computed by CSTEQR,
  495. *> CPTEQR, and CSTEIN.
  496. *> \endverbatim
  497. *>
  498. *> \param[out] WORK
  499. *> \verbatim
  500. *> WORK is COMPLEX array of
  501. *> dimension( LWORK )
  502. *> \endverbatim
  503. *>
  504. *> \param[in] LWORK
  505. *> \verbatim
  506. *> LWORK is INTEGER
  507. *> The number of entries in WORK. This must be at least
  508. *> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
  509. *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
  510. *> \endverbatim
  511. *>
  512. *> \param[out] IWORK
  513. *> \verbatim
  514. *> IWORK is INTEGER array,
  515. *> Workspace.
  516. *> \endverbatim
  517. *>
  518. *> \param[out] LIWORK
  519. *> \verbatim
  520. *> LIWORK is INTEGER
  521. *> The number of entries in IWORK. This must be at least
  522. *> 6 + 6*Nmax + 5 * Nmax * lg Nmax
  523. *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
  524. *> \endverbatim
  525. *>
  526. *> \param[out] RWORK
  527. *> \verbatim
  528. *> RWORK is REAL array
  529. *> \endverbatim
  530. *>
  531. *> \param[in] LRWORK
  532. *> \verbatim
  533. *> LRWORK is INTEGER
  534. *> The number of entries in LRWORK (dimension( ??? )
  535. *> \endverbatim
  536. *>
  537. *> \param[out] RESULT
  538. *> \verbatim
  539. *> RESULT is REAL array, dimension (26)
  540. *> The values computed by the tests described above.
  541. *> The values are currently limited to 1/ulp, to avoid
  542. *> overflow.
  543. *> \endverbatim
  544. *>
  545. *> \param[out] INFO
  546. *> \verbatim
  547. *> INFO is INTEGER
  548. *> If 0, then everything ran OK.
  549. *> -1: NSIZES < 0
  550. *> -2: Some NN(j) < 0
  551. *> -3: NTYPES < 0
  552. *> -5: THRESH < 0
  553. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  554. *> -23: LDU < 1 or LDU < NMAX.
  555. *> -29: LWORK too small.
  556. *> If CLATMR, CLATMS, CHETRD, CUNGTR, CSTEQR, SSTERF,
  557. *> or CUNMC2 returns an error code, the
  558. *> absolute value of it is returned.
  559. *>
  560. *>-----------------------------------------------------------------------
  561. *>
  562. *> Some Local Variables and Parameters:
  563. *> ---- ----- --------- --- ----------
  564. *> ZERO, ONE Real 0 and 1.
  565. *> MAXTYP The number of types defined.
  566. *> NTEST The number of tests performed, or which can
  567. *> be performed so far, for the current matrix.
  568. *> NTESTT The total number of tests performed so far.
  569. *> NBLOCK Blocksize as returned by ENVIR.
  570. *> NMAX Largest value in NN.
  571. *> NMATS The number of matrices generated so far.
  572. *> NERRS The number of tests which have exceeded THRESH
  573. *> so far.
  574. *> COND, IMODE Values to be passed to the matrix generators.
  575. *> ANORM Norm of A; passed to matrix generators.
  576. *>
  577. *> OVFL, UNFL Overflow and underflow thresholds.
  578. *> ULP, ULPINV Finest relative precision and its inverse.
  579. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  580. *> The following four arrays decode JTYPE:
  581. *> KTYPE(j) The general type (1-10) for type "j".
  582. *> KMODE(j) The MODE value to be passed to the matrix
  583. *> generator for type "j".
  584. *> KMAGN(j) The order of magnitude ( O(1),
  585. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  586. *> \endverbatim
  587. *
  588. * Authors:
  589. * ========
  590. *
  591. *> \author Univ. of Tennessee
  592. *> \author Univ. of California Berkeley
  593. *> \author Univ. of Colorado Denver
  594. *> \author NAG Ltd.
  595. *
  596. *> \date December 2016
  597. *
  598. *> \ingroup complex_eig
  599. *
  600. * =====================================================================
  601. SUBROUTINE CCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  602. $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
  603. $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
  604. $ LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
  605. $ INFO )
  606. *
  607. * -- LAPACK test routine (version 3.7.0) --
  608. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  609. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  610. * December 2016
  611. *
  612. * .. Scalar Arguments ..
  613. INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
  614. $ NSIZES, NTYPES
  615. REAL THRESH
  616. * ..
  617. * .. Array Arguments ..
  618. LOGICAL DOTYPE( * )
  619. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  620. REAL D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
  621. $ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
  622. $ WA1( * ), WA2( * ), WA3( * ), WR( * )
  623. COMPLEX A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
  624. $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
  625. * ..
  626. *
  627. * =====================================================================
  628. *
  629. * .. Parameters ..
  630. REAL ZERO, ONE, TWO, EIGHT, TEN, HUN
  631. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
  632. $ EIGHT = 8.0E0, TEN = 10.0E0, HUN = 100.0E0 )
  633. COMPLEX CZERO, CONE
  634. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  635. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  636. REAL HALF
  637. PARAMETER ( HALF = ONE / TWO )
  638. INTEGER MAXTYP
  639. PARAMETER ( MAXTYP = 21 )
  640. LOGICAL CRANGE
  641. PARAMETER ( CRANGE = .FALSE. )
  642. LOGICAL CREL
  643. PARAMETER ( CREL = .FALSE. )
  644. * ..
  645. * .. Local Scalars ..
  646. LOGICAL BADNN, TRYRAC
  647. INTEGER I, IINFO, IL, IMODE, INDE, INDRWK, ITEMP,
  648. $ ITYPE, IU, J, JC, JR, JSIZE, JTYPE, LGN,
  649. $ LIWEDC, LOG2UI, LRWEDC, LWEDC, M, M2, M3,
  650. $ MTYPES, N, NAP, NBLOCK, NERRS, NMATS, NMAX,
  651. $ NSPLIT, NTEST, NTESTT
  652. REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
  653. $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
  654. $ ULPINV, UNFL, VL, VU
  655. * ..
  656. * .. Local Arrays ..
  657. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
  658. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  659. $ KTYPE( MAXTYP )
  660. REAL DUMMA( 1 )
  661. * ..
  662. * .. External Functions ..
  663. INTEGER ILAENV
  664. REAL SLAMCH, SLARND, SSXT1
  665. EXTERNAL ILAENV, SLAMCH, SLARND, SSXT1
  666. * ..
  667. * .. External Subroutines ..
  668. EXTERNAL CCOPY, CHET21, CHETRD, CHPT21, CHPTRD, CLACPY,
  669. $ CLASET, CLATMR, CLATMS, CPTEQR, CSTEDC, CSTEMR,
  670. $ CSTEIN, CSTEQR, CSTT21, CSTT22, CUNGTR, CUPGTR,
  671. $ SCOPY, SLABAD, SLASUM, SSTEBZ, SSTECH, SSTERF,
  672. $ XERBLA
  673. * ..
  674. * .. Intrinsic Functions ..
  675. INTRINSIC ABS, CONJG, INT, LOG, MAX, MIN, REAL, SQRT
  676. * ..
  677. * .. Data statements ..
  678. DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
  679. $ 8, 8, 9, 9, 9, 9, 9, 10 /
  680. DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  681. $ 2, 3, 1, 1, 1, 2, 3, 1 /
  682. DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  683. $ 0, 0, 4, 3, 1, 4, 4, 3 /
  684. * ..
  685. * .. Executable Statements ..
  686. *
  687. * Keep ftnchek happy
  688. IDUMMA( 1 ) = 1
  689. *
  690. * Check for errors
  691. *
  692. NTESTT = 0
  693. INFO = 0
  694. *
  695. * Important constants
  696. *
  697. BADNN = .FALSE.
  698. TRYRAC = .TRUE.
  699. NMAX = 1
  700. DO 10 J = 1, NSIZES
  701. NMAX = MAX( NMAX, NN( J ) )
  702. IF( NN( J ).LT.0 )
  703. $ BADNN = .TRUE.
  704. 10 CONTINUE
  705. *
  706. NBLOCK = ILAENV( 1, 'CHETRD', 'L', NMAX, -1, -1, -1 )
  707. NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
  708. *
  709. * Check for errors
  710. *
  711. IF( NSIZES.LT.0 ) THEN
  712. INFO = -1
  713. ELSE IF( BADNN ) THEN
  714. INFO = -2
  715. ELSE IF( NTYPES.LT.0 ) THEN
  716. INFO = -3
  717. ELSE IF( LDA.LT.NMAX ) THEN
  718. INFO = -9
  719. ELSE IF( LDU.LT.NMAX ) THEN
  720. INFO = -23
  721. ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
  722. INFO = -29
  723. END IF
  724. *
  725. IF( INFO.NE.0 ) THEN
  726. CALL XERBLA( 'CCHKST', -INFO )
  727. RETURN
  728. END IF
  729. *
  730. * Quick return if possible
  731. *
  732. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  733. $ RETURN
  734. *
  735. * More Important constants
  736. *
  737. UNFL = SLAMCH( 'Safe minimum' )
  738. OVFL = ONE / UNFL
  739. CALL SLABAD( UNFL, OVFL )
  740. ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
  741. ULPINV = ONE / ULP
  742. LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
  743. RTUNFL = SQRT( UNFL )
  744. RTOVFL = SQRT( OVFL )
  745. *
  746. * Loop over sizes, types
  747. *
  748. DO 20 I = 1, 4
  749. ISEED2( I ) = ISEED( I )
  750. 20 CONTINUE
  751. NERRS = 0
  752. NMATS = 0
  753. *
  754. DO 310 JSIZE = 1, NSIZES
  755. N = NN( JSIZE )
  756. IF( N.GT.0 ) THEN
  757. LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
  758. IF( 2**LGN.LT.N )
  759. $ LGN = LGN + 1
  760. IF( 2**LGN.LT.N )
  761. $ LGN = LGN + 1
  762. LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
  763. LRWEDC = 1 + 3*N + 2*N*LGN + 4*N**2
  764. LIWEDC = 6 + 6*N + 5*N*LGN
  765. ELSE
  766. LWEDC = 8
  767. LRWEDC = 7
  768. LIWEDC = 12
  769. END IF
  770. NAP = ( N*( N+1 ) ) / 2
  771. ANINV = ONE / REAL( MAX( 1, N ) )
  772. *
  773. IF( NSIZES.NE.1 ) THEN
  774. MTYPES = MIN( MAXTYP, NTYPES )
  775. ELSE
  776. MTYPES = MIN( MAXTYP+1, NTYPES )
  777. END IF
  778. *
  779. DO 300 JTYPE = 1, MTYPES
  780. IF( .NOT.DOTYPE( JTYPE ) )
  781. $ GO TO 300
  782. NMATS = NMATS + 1
  783. NTEST = 0
  784. *
  785. DO 30 J = 1, 4
  786. IOLDSD( J ) = ISEED( J )
  787. 30 CONTINUE
  788. *
  789. * Compute "A"
  790. *
  791. * Control parameters:
  792. *
  793. * KMAGN KMODE KTYPE
  794. * =1 O(1) clustered 1 zero
  795. * =2 large clustered 2 identity
  796. * =3 small exponential (none)
  797. * =4 arithmetic diagonal, (w/ eigenvalues)
  798. * =5 random log Hermitian, w/ eigenvalues
  799. * =6 random (none)
  800. * =7 random diagonal
  801. * =8 random Hermitian
  802. * =9 positive definite
  803. * =10 diagonally dominant tridiagonal
  804. *
  805. IF( MTYPES.GT.MAXTYP )
  806. $ GO TO 100
  807. *
  808. ITYPE = KTYPE( JTYPE )
  809. IMODE = KMODE( JTYPE )
  810. *
  811. * Compute norm
  812. *
  813. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  814. *
  815. 40 CONTINUE
  816. ANORM = ONE
  817. GO TO 70
  818. *
  819. 50 CONTINUE
  820. ANORM = ( RTOVFL*ULP )*ANINV
  821. GO TO 70
  822. *
  823. 60 CONTINUE
  824. ANORM = RTUNFL*N*ULPINV
  825. GO TO 70
  826. *
  827. 70 CONTINUE
  828. *
  829. CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  830. IINFO = 0
  831. IF( JTYPE.LE.15 ) THEN
  832. COND = ULPINV
  833. ELSE
  834. COND = ULPINV*ANINV / TEN
  835. END IF
  836. *
  837. * Special Matrices -- Identity & Jordan block
  838. *
  839. * Zero
  840. *
  841. IF( ITYPE.EQ.1 ) THEN
  842. IINFO = 0
  843. *
  844. ELSE IF( ITYPE.EQ.2 ) THEN
  845. *
  846. * Identity
  847. *
  848. DO 80 JC = 1, N
  849. A( JC, JC ) = ANORM
  850. 80 CONTINUE
  851. *
  852. ELSE IF( ITYPE.EQ.4 ) THEN
  853. *
  854. * Diagonal Matrix, [Eigen]values Specified
  855. *
  856. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  857. $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
  858. *
  859. *
  860. ELSE IF( ITYPE.EQ.5 ) THEN
  861. *
  862. * Hermitian, eigenvalues specified
  863. *
  864. CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  865. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  866. *
  867. ELSE IF( ITYPE.EQ.7 ) THEN
  868. *
  869. * Diagonal, random eigenvalues
  870. *
  871. CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  872. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  873. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  874. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  875. *
  876. ELSE IF( ITYPE.EQ.8 ) THEN
  877. *
  878. * Hermitian, random eigenvalues
  879. *
  880. CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  881. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  882. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  883. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  884. *
  885. ELSE IF( ITYPE.EQ.9 ) THEN
  886. *
  887. * Positive definite, eigenvalues specified.
  888. *
  889. CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
  890. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  891. *
  892. ELSE IF( ITYPE.EQ.10 ) THEN
  893. *
  894. * Positive definite tridiagonal, eigenvalues specified.
  895. *
  896. CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
  897. $ ANORM, 1, 1, 'N', A, LDA, WORK, IINFO )
  898. DO 90 I = 2, N
  899. TEMP1 = ABS( A( I-1, I ) )
  900. TEMP2 = SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
  901. IF( TEMP1.GT.HALF*TEMP2 ) THEN
  902. A( I-1, I ) = A( I-1, I )*
  903. $ ( HALF*TEMP2 / ( UNFL+TEMP1 ) )
  904. A( I, I-1 ) = CONJG( A( I-1, I ) )
  905. END IF
  906. 90 CONTINUE
  907. *
  908. ELSE
  909. *
  910. IINFO = 1
  911. END IF
  912. *
  913. IF( IINFO.NE.0 ) THEN
  914. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  915. $ IOLDSD
  916. INFO = ABS( IINFO )
  917. RETURN
  918. END IF
  919. *
  920. 100 CONTINUE
  921. *
  922. * Call CHETRD and CUNGTR to compute S and U from
  923. * upper triangle.
  924. *
  925. CALL CLACPY( 'U', N, N, A, LDA, V, LDU )
  926. *
  927. NTEST = 1
  928. CALL CHETRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
  929. $ IINFO )
  930. *
  931. IF( IINFO.NE.0 ) THEN
  932. WRITE( NOUNIT, FMT = 9999 )'CHETRD(U)', IINFO, N, JTYPE,
  933. $ IOLDSD
  934. INFO = ABS( IINFO )
  935. IF( IINFO.LT.0 ) THEN
  936. RETURN
  937. ELSE
  938. RESULT( 1 ) = ULPINV
  939. GO TO 280
  940. END IF
  941. END IF
  942. *
  943. CALL CLACPY( 'U', N, N, V, LDU, U, LDU )
  944. *
  945. NTEST = 2
  946. CALL CUNGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
  947. IF( IINFO.NE.0 ) THEN
  948. WRITE( NOUNIT, FMT = 9999 )'CUNGTR(U)', IINFO, N, JTYPE,
  949. $ IOLDSD
  950. INFO = ABS( IINFO )
  951. IF( IINFO.LT.0 ) THEN
  952. RETURN
  953. ELSE
  954. RESULT( 2 ) = ULPINV
  955. GO TO 280
  956. END IF
  957. END IF
  958. *
  959. * Do tests 1 and 2
  960. *
  961. CALL CHET21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
  962. $ LDU, TAU, WORK, RWORK, RESULT( 1 ) )
  963. CALL CHET21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
  964. $ LDU, TAU, WORK, RWORK, RESULT( 2 ) )
  965. *
  966. * Call CHETRD and CUNGTR to compute S and U from
  967. * lower triangle, do tests.
  968. *
  969. CALL CLACPY( 'L', N, N, A, LDA, V, LDU )
  970. *
  971. NTEST = 3
  972. CALL CHETRD( 'L', N, V, LDU, SD, SE, TAU, WORK, LWORK,
  973. $ IINFO )
  974. *
  975. IF( IINFO.NE.0 ) THEN
  976. WRITE( NOUNIT, FMT = 9999 )'CHETRD(L)', IINFO, N, JTYPE,
  977. $ IOLDSD
  978. INFO = ABS( IINFO )
  979. IF( IINFO.LT.0 ) THEN
  980. RETURN
  981. ELSE
  982. RESULT( 3 ) = ULPINV
  983. GO TO 280
  984. END IF
  985. END IF
  986. *
  987. CALL CLACPY( 'L', N, N, V, LDU, U, LDU )
  988. *
  989. NTEST = 4
  990. CALL CUNGTR( 'L', N, U, LDU, TAU, WORK, LWORK, IINFO )
  991. IF( IINFO.NE.0 ) THEN
  992. WRITE( NOUNIT, FMT = 9999 )'CUNGTR(L)', IINFO, N, JTYPE,
  993. $ IOLDSD
  994. INFO = ABS( IINFO )
  995. IF( IINFO.LT.0 ) THEN
  996. RETURN
  997. ELSE
  998. RESULT( 4 ) = ULPINV
  999. GO TO 280
  1000. END IF
  1001. END IF
  1002. *
  1003. CALL CHET21( 2, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
  1004. $ LDU, TAU, WORK, RWORK, RESULT( 3 ) )
  1005. CALL CHET21( 3, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
  1006. $ LDU, TAU, WORK, RWORK, RESULT( 4 ) )
  1007. *
  1008. * Store the upper triangle of A in AP
  1009. *
  1010. I = 0
  1011. DO 120 JC = 1, N
  1012. DO 110 JR = 1, JC
  1013. I = I + 1
  1014. AP( I ) = A( JR, JC )
  1015. 110 CONTINUE
  1016. 120 CONTINUE
  1017. *
  1018. * Call CHPTRD and CUPGTR to compute S and U from AP
  1019. *
  1020. CALL CCOPY( NAP, AP, 1, VP, 1 )
  1021. *
  1022. NTEST = 5
  1023. CALL CHPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
  1024. *
  1025. IF( IINFO.NE.0 ) THEN
  1026. WRITE( NOUNIT, FMT = 9999 )'CHPTRD(U)', IINFO, N, JTYPE,
  1027. $ IOLDSD
  1028. INFO = ABS( IINFO )
  1029. IF( IINFO.LT.0 ) THEN
  1030. RETURN
  1031. ELSE
  1032. RESULT( 5 ) = ULPINV
  1033. GO TO 280
  1034. END IF
  1035. END IF
  1036. *
  1037. NTEST = 6
  1038. CALL CUPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
  1039. IF( IINFO.NE.0 ) THEN
  1040. WRITE( NOUNIT, FMT = 9999 )'CUPGTR(U)', IINFO, N, JTYPE,
  1041. $ IOLDSD
  1042. INFO = ABS( IINFO )
  1043. IF( IINFO.LT.0 ) THEN
  1044. RETURN
  1045. ELSE
  1046. RESULT( 6 ) = ULPINV
  1047. GO TO 280
  1048. END IF
  1049. END IF
  1050. *
  1051. * Do tests 5 and 6
  1052. *
  1053. CALL CHPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1054. $ WORK, RWORK, RESULT( 5 ) )
  1055. CALL CHPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1056. $ WORK, RWORK, RESULT( 6 ) )
  1057. *
  1058. * Store the lower triangle of A in AP
  1059. *
  1060. I = 0
  1061. DO 140 JC = 1, N
  1062. DO 130 JR = JC, N
  1063. I = I + 1
  1064. AP( I ) = A( JR, JC )
  1065. 130 CONTINUE
  1066. 140 CONTINUE
  1067. *
  1068. * Call CHPTRD and CUPGTR to compute S and U from AP
  1069. *
  1070. CALL CCOPY( NAP, AP, 1, VP, 1 )
  1071. *
  1072. NTEST = 7
  1073. CALL CHPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
  1074. *
  1075. IF( IINFO.NE.0 ) THEN
  1076. WRITE( NOUNIT, FMT = 9999 )'CHPTRD(L)', IINFO, N, JTYPE,
  1077. $ IOLDSD
  1078. INFO = ABS( IINFO )
  1079. IF( IINFO.LT.0 ) THEN
  1080. RETURN
  1081. ELSE
  1082. RESULT( 7 ) = ULPINV
  1083. GO TO 280
  1084. END IF
  1085. END IF
  1086. *
  1087. NTEST = 8
  1088. CALL CUPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
  1089. IF( IINFO.NE.0 ) THEN
  1090. WRITE( NOUNIT, FMT = 9999 )'CUPGTR(L)', IINFO, N, JTYPE,
  1091. $ IOLDSD
  1092. INFO = ABS( IINFO )
  1093. IF( IINFO.LT.0 ) THEN
  1094. RETURN
  1095. ELSE
  1096. RESULT( 8 ) = ULPINV
  1097. GO TO 280
  1098. END IF
  1099. END IF
  1100. *
  1101. CALL CHPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1102. $ WORK, RWORK, RESULT( 7 ) )
  1103. CALL CHPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1104. $ WORK, RWORK, RESULT( 8 ) )
  1105. *
  1106. * Call CSTEQR to compute D1, D2, and Z, do tests.
  1107. *
  1108. * Compute D1 and Z
  1109. *
  1110. CALL SCOPY( N, SD, 1, D1, 1 )
  1111. IF( N.GT.0 )
  1112. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1113. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1114. *
  1115. NTEST = 9
  1116. CALL CSTEQR( 'V', N, D1, RWORK, Z, LDU, RWORK( N+1 ),
  1117. $ IINFO )
  1118. IF( IINFO.NE.0 ) THEN
  1119. WRITE( NOUNIT, FMT = 9999 )'CSTEQR(V)', IINFO, N, JTYPE,
  1120. $ IOLDSD
  1121. INFO = ABS( IINFO )
  1122. IF( IINFO.LT.0 ) THEN
  1123. RETURN
  1124. ELSE
  1125. RESULT( 9 ) = ULPINV
  1126. GO TO 280
  1127. END IF
  1128. END IF
  1129. *
  1130. * Compute D2
  1131. *
  1132. CALL SCOPY( N, SD, 1, D2, 1 )
  1133. IF( N.GT.0 )
  1134. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1135. *
  1136. NTEST = 11
  1137. CALL CSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
  1138. $ IINFO )
  1139. IF( IINFO.NE.0 ) THEN
  1140. WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
  1141. $ IOLDSD
  1142. INFO = ABS( IINFO )
  1143. IF( IINFO.LT.0 ) THEN
  1144. RETURN
  1145. ELSE
  1146. RESULT( 11 ) = ULPINV
  1147. GO TO 280
  1148. END IF
  1149. END IF
  1150. *
  1151. * Compute D3 (using PWK method)
  1152. *
  1153. CALL SCOPY( N, SD, 1, D3, 1 )
  1154. IF( N.GT.0 )
  1155. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1156. *
  1157. NTEST = 12
  1158. CALL SSTERF( N, D3, RWORK, IINFO )
  1159. IF( IINFO.NE.0 ) THEN
  1160. WRITE( NOUNIT, FMT = 9999 )'SSTERF', IINFO, N, JTYPE,
  1161. $ IOLDSD
  1162. INFO = ABS( IINFO )
  1163. IF( IINFO.LT.0 ) THEN
  1164. RETURN
  1165. ELSE
  1166. RESULT( 12 ) = ULPINV
  1167. GO TO 280
  1168. END IF
  1169. END IF
  1170. *
  1171. * Do Tests 9 and 10
  1172. *
  1173. CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
  1174. $ RESULT( 9 ) )
  1175. *
  1176. * Do Tests 11 and 12
  1177. *
  1178. TEMP1 = ZERO
  1179. TEMP2 = ZERO
  1180. TEMP3 = ZERO
  1181. TEMP4 = ZERO
  1182. *
  1183. DO 150 J = 1, N
  1184. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1185. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1186. TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
  1187. TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  1188. 150 CONTINUE
  1189. *
  1190. RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1191. RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
  1192. *
  1193. * Do Test 13 -- Sturm Sequence Test of Eigenvalues
  1194. * Go up by factors of two until it succeeds
  1195. *
  1196. NTEST = 13
  1197. TEMP1 = THRESH*( HALF-ULP )
  1198. *
  1199. DO 160 J = 0, LOG2UI
  1200. CALL SSTECH( N, SD, SE, D1, TEMP1, RWORK, IINFO )
  1201. IF( IINFO.EQ.0 )
  1202. $ GO TO 170
  1203. TEMP1 = TEMP1*TWO
  1204. 160 CONTINUE
  1205. *
  1206. 170 CONTINUE
  1207. RESULT( 13 ) = TEMP1
  1208. *
  1209. * For positive definite matrices ( JTYPE.GT.15 ) call CPTEQR
  1210. * and do tests 14, 15, and 16 .
  1211. *
  1212. IF( JTYPE.GT.15 ) THEN
  1213. *
  1214. * Compute D4 and Z4
  1215. *
  1216. CALL SCOPY( N, SD, 1, D4, 1 )
  1217. IF( N.GT.0 )
  1218. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1219. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1220. *
  1221. NTEST = 14
  1222. CALL CPTEQR( 'V', N, D4, RWORK, Z, LDU, RWORK( N+1 ),
  1223. $ IINFO )
  1224. IF( IINFO.NE.0 ) THEN
  1225. WRITE( NOUNIT, FMT = 9999 )'CPTEQR(V)', IINFO, N,
  1226. $ JTYPE, IOLDSD
  1227. INFO = ABS( IINFO )
  1228. IF( IINFO.LT.0 ) THEN
  1229. RETURN
  1230. ELSE
  1231. RESULT( 14 ) = ULPINV
  1232. GO TO 280
  1233. END IF
  1234. END IF
  1235. *
  1236. * Do Tests 14 and 15
  1237. *
  1238. CALL CSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
  1239. $ RWORK, RESULT( 14 ) )
  1240. *
  1241. * Compute D5
  1242. *
  1243. CALL SCOPY( N, SD, 1, D5, 1 )
  1244. IF( N.GT.0 )
  1245. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1246. *
  1247. NTEST = 16
  1248. CALL CPTEQR( 'N', N, D5, RWORK, Z, LDU, RWORK( N+1 ),
  1249. $ IINFO )
  1250. IF( IINFO.NE.0 ) THEN
  1251. WRITE( NOUNIT, FMT = 9999 )'CPTEQR(N)', IINFO, N,
  1252. $ JTYPE, IOLDSD
  1253. INFO = ABS( IINFO )
  1254. IF( IINFO.LT.0 ) THEN
  1255. RETURN
  1256. ELSE
  1257. RESULT( 16 ) = ULPINV
  1258. GO TO 280
  1259. END IF
  1260. END IF
  1261. *
  1262. * Do Test 16
  1263. *
  1264. TEMP1 = ZERO
  1265. TEMP2 = ZERO
  1266. DO 180 J = 1, N
  1267. TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
  1268. TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
  1269. 180 CONTINUE
  1270. *
  1271. RESULT( 16 ) = TEMP2 / MAX( UNFL,
  1272. $ HUN*ULP*MAX( TEMP1, TEMP2 ) )
  1273. ELSE
  1274. RESULT( 14 ) = ZERO
  1275. RESULT( 15 ) = ZERO
  1276. RESULT( 16 ) = ZERO
  1277. END IF
  1278. *
  1279. * Call SSTEBZ with different options and do tests 17-18.
  1280. *
  1281. * If S is positive definite and diagonally dominant,
  1282. * ask for all eigenvalues with high relative accuracy.
  1283. *
  1284. VL = ZERO
  1285. VU = ZERO
  1286. IL = 0
  1287. IU = 0
  1288. IF( JTYPE.EQ.21 ) THEN
  1289. NTEST = 17
  1290. ABSTOL = UNFL + UNFL
  1291. CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1292. $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
  1293. $ RWORK, IWORK( 2*N+1 ), IINFO )
  1294. IF( IINFO.NE.0 ) THEN
  1295. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,rel)', IINFO, N,
  1296. $ JTYPE, IOLDSD
  1297. INFO = ABS( IINFO )
  1298. IF( IINFO.LT.0 ) THEN
  1299. RETURN
  1300. ELSE
  1301. RESULT( 17 ) = ULPINV
  1302. GO TO 280
  1303. END IF
  1304. END IF
  1305. *
  1306. * Do test 17
  1307. *
  1308. TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
  1309. $ ( ONE-HALF )**4
  1310. *
  1311. TEMP1 = ZERO
  1312. DO 190 J = 1, N
  1313. TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
  1314. $ ( ABSTOL+ABS( D4( J ) ) ) )
  1315. 190 CONTINUE
  1316. *
  1317. RESULT( 17 ) = TEMP1 / TEMP2
  1318. ELSE
  1319. RESULT( 17 ) = ZERO
  1320. END IF
  1321. *
  1322. * Now ask for all eigenvalues with high absolute accuracy.
  1323. *
  1324. NTEST = 18
  1325. ABSTOL = UNFL + UNFL
  1326. CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
  1327. $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
  1328. $ IWORK( 2*N+1 ), IINFO )
  1329. IF( IINFO.NE.0 ) THEN
  1330. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A)', IINFO, N, JTYPE,
  1331. $ IOLDSD
  1332. INFO = ABS( IINFO )
  1333. IF( IINFO.LT.0 ) THEN
  1334. RETURN
  1335. ELSE
  1336. RESULT( 18 ) = ULPINV
  1337. GO TO 280
  1338. END IF
  1339. END IF
  1340. *
  1341. * Do test 18
  1342. *
  1343. TEMP1 = ZERO
  1344. TEMP2 = ZERO
  1345. DO 200 J = 1, N
  1346. TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
  1347. TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
  1348. 200 CONTINUE
  1349. *
  1350. RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1351. *
  1352. * Choose random values for IL and IU, and ask for the
  1353. * IL-th through IU-th eigenvalues.
  1354. *
  1355. NTEST = 19
  1356. IF( N.LE.1 ) THEN
  1357. IL = 1
  1358. IU = N
  1359. ELSE
  1360. IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1361. IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1362. IF( IU.LT.IL ) THEN
  1363. ITEMP = IU
  1364. IU = IL
  1365. IL = ITEMP
  1366. END IF
  1367. END IF
  1368. *
  1369. CALL SSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1370. $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
  1371. $ RWORK, IWORK( 2*N+1 ), IINFO )
  1372. IF( IINFO.NE.0 ) THEN
  1373. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(I)', IINFO, N, JTYPE,
  1374. $ IOLDSD
  1375. INFO = ABS( IINFO )
  1376. IF( IINFO.LT.0 ) THEN
  1377. RETURN
  1378. ELSE
  1379. RESULT( 19 ) = ULPINV
  1380. GO TO 280
  1381. END IF
  1382. END IF
  1383. *
  1384. * Determine the values VL and VU of the IL-th and IU-th
  1385. * eigenvalues and ask for all eigenvalues in this range.
  1386. *
  1387. IF( N.GT.0 ) THEN
  1388. IF( IL.NE.1 ) THEN
  1389. VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
  1390. $ ULP*ANORM, TWO*RTUNFL )
  1391. ELSE
  1392. VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
  1393. $ ULP*ANORM, TWO*RTUNFL )
  1394. END IF
  1395. IF( IU.NE.N ) THEN
  1396. VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
  1397. $ ULP*ANORM, TWO*RTUNFL )
  1398. ELSE
  1399. VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
  1400. $ ULP*ANORM, TWO*RTUNFL )
  1401. END IF
  1402. ELSE
  1403. VL = ZERO
  1404. VU = ONE
  1405. END IF
  1406. *
  1407. CALL SSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1408. $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
  1409. $ RWORK, IWORK( 2*N+1 ), IINFO )
  1410. IF( IINFO.NE.0 ) THEN
  1411. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(V)', IINFO, N, JTYPE,
  1412. $ IOLDSD
  1413. INFO = ABS( IINFO )
  1414. IF( IINFO.LT.0 ) THEN
  1415. RETURN
  1416. ELSE
  1417. RESULT( 19 ) = ULPINV
  1418. GO TO 280
  1419. END IF
  1420. END IF
  1421. *
  1422. IF( M3.EQ.0 .AND. N.NE.0 ) THEN
  1423. RESULT( 19 ) = ULPINV
  1424. GO TO 280
  1425. END IF
  1426. *
  1427. * Do test 19
  1428. *
  1429. TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1430. TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1431. IF( N.GT.0 ) THEN
  1432. TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
  1433. ELSE
  1434. TEMP3 = ZERO
  1435. END IF
  1436. *
  1437. RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
  1438. *
  1439. * Call CSTEIN to compute eigenvectors corresponding to
  1440. * eigenvalues in WA1. (First call SSTEBZ again, to make sure
  1441. * it returns these eigenvalues in the correct order.)
  1442. *
  1443. NTEST = 21
  1444. CALL SSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
  1445. $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
  1446. $ IWORK( 2*N+1 ), IINFO )
  1447. IF( IINFO.NE.0 ) THEN
  1448. WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,B)', IINFO, N,
  1449. $ JTYPE, IOLDSD
  1450. INFO = ABS( IINFO )
  1451. IF( IINFO.LT.0 ) THEN
  1452. RETURN
  1453. ELSE
  1454. RESULT( 20 ) = ULPINV
  1455. RESULT( 21 ) = ULPINV
  1456. GO TO 280
  1457. END IF
  1458. END IF
  1459. *
  1460. CALL CSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
  1461. $ LDU, RWORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
  1462. $ IINFO )
  1463. IF( IINFO.NE.0 ) THEN
  1464. WRITE( NOUNIT, FMT = 9999 )'CSTEIN', IINFO, N, JTYPE,
  1465. $ IOLDSD
  1466. INFO = ABS( IINFO )
  1467. IF( IINFO.LT.0 ) THEN
  1468. RETURN
  1469. ELSE
  1470. RESULT( 20 ) = ULPINV
  1471. RESULT( 21 ) = ULPINV
  1472. GO TO 280
  1473. END IF
  1474. END IF
  1475. *
  1476. * Do tests 20 and 21
  1477. *
  1478. CALL CSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK, RWORK,
  1479. $ RESULT( 20 ) )
  1480. *
  1481. * Call CSTEDC(I) to compute D1 and Z, do tests.
  1482. *
  1483. * Compute D1 and Z
  1484. *
  1485. INDE = 1
  1486. INDRWK = INDE + N
  1487. CALL SCOPY( N, SD, 1, D1, 1 )
  1488. IF( N.GT.0 )
  1489. $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
  1490. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1491. *
  1492. NTEST = 22
  1493. CALL CSTEDC( 'I', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
  1494. $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
  1495. IF( IINFO.NE.0 ) THEN
  1496. WRITE( NOUNIT, FMT = 9999 )'CSTEDC(I)', IINFO, N, JTYPE,
  1497. $ IOLDSD
  1498. INFO = ABS( IINFO )
  1499. IF( IINFO.LT.0 ) THEN
  1500. RETURN
  1501. ELSE
  1502. RESULT( 22 ) = ULPINV
  1503. GO TO 280
  1504. END IF
  1505. END IF
  1506. *
  1507. * Do Tests 22 and 23
  1508. *
  1509. CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
  1510. $ RESULT( 22 ) )
  1511. *
  1512. * Call CSTEDC(V) to compute D1 and Z, do tests.
  1513. *
  1514. * Compute D1 and Z
  1515. *
  1516. CALL SCOPY( N, SD, 1, D1, 1 )
  1517. IF( N.GT.0 )
  1518. $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
  1519. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1520. *
  1521. NTEST = 24
  1522. CALL CSTEDC( 'V', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
  1523. $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
  1524. IF( IINFO.NE.0 ) THEN
  1525. WRITE( NOUNIT, FMT = 9999 )'CSTEDC(V)', IINFO, N, JTYPE,
  1526. $ IOLDSD
  1527. INFO = ABS( IINFO )
  1528. IF( IINFO.LT.0 ) THEN
  1529. RETURN
  1530. ELSE
  1531. RESULT( 24 ) = ULPINV
  1532. GO TO 280
  1533. END IF
  1534. END IF
  1535. *
  1536. * Do Tests 24 and 25
  1537. *
  1538. CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
  1539. $ RESULT( 24 ) )
  1540. *
  1541. * Call CSTEDC(N) to compute D2, do tests.
  1542. *
  1543. * Compute D2
  1544. *
  1545. CALL SCOPY( N, SD, 1, D2, 1 )
  1546. IF( N.GT.0 )
  1547. $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
  1548. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1549. *
  1550. NTEST = 26
  1551. CALL CSTEDC( 'N', N, D2, RWORK( INDE ), Z, LDU, WORK, LWEDC,
  1552. $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
  1553. IF( IINFO.NE.0 ) THEN
  1554. WRITE( NOUNIT, FMT = 9999 )'CSTEDC(N)', IINFO, N, JTYPE,
  1555. $ IOLDSD
  1556. INFO = ABS( IINFO )
  1557. IF( IINFO.LT.0 ) THEN
  1558. RETURN
  1559. ELSE
  1560. RESULT( 26 ) = ULPINV
  1561. GO TO 280
  1562. END IF
  1563. END IF
  1564. *
  1565. * Do Test 26
  1566. *
  1567. TEMP1 = ZERO
  1568. TEMP2 = ZERO
  1569. *
  1570. DO 210 J = 1, N
  1571. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1572. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1573. 210 CONTINUE
  1574. *
  1575. RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1576. *
  1577. * Only test CSTEMR if IEEE compliant
  1578. *
  1579. IF( ILAENV( 10, 'CSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
  1580. $ ILAENV( 11, 'CSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
  1581. *
  1582. * Call CSTEMR, do test 27 (relative eigenvalue accuracy)
  1583. *
  1584. * If S is positive definite and diagonally dominant,
  1585. * ask for all eigenvalues with high relative accuracy.
  1586. *
  1587. VL = ZERO
  1588. VU = ZERO
  1589. IL = 0
  1590. IU = 0
  1591. IF( JTYPE.EQ.21 .AND. CREL ) THEN
  1592. NTEST = 27
  1593. ABSTOL = UNFL + UNFL
  1594. CALL CSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
  1595. $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1596. $ RWORK, LRWORK, IWORK( 2*N+1 ), LWORK-2*N,
  1597. $ IINFO )
  1598. IF( IINFO.NE.0 ) THEN
  1599. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,A,rel)',
  1600. $ IINFO, N, JTYPE, IOLDSD
  1601. INFO = ABS( IINFO )
  1602. IF( IINFO.LT.0 ) THEN
  1603. RETURN
  1604. ELSE
  1605. RESULT( 27 ) = ULPINV
  1606. GO TO 270
  1607. END IF
  1608. END IF
  1609. *
  1610. * Do test 27
  1611. *
  1612. TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
  1613. $ ( ONE-HALF )**4
  1614. *
  1615. TEMP1 = ZERO
  1616. DO 220 J = 1, N
  1617. TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
  1618. $ ( ABSTOL+ABS( D4( J ) ) ) )
  1619. 220 CONTINUE
  1620. *
  1621. RESULT( 27 ) = TEMP1 / TEMP2
  1622. *
  1623. IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1624. IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1625. IF( IU.LT.IL ) THEN
  1626. ITEMP = IU
  1627. IU = IL
  1628. IL = ITEMP
  1629. END IF
  1630. *
  1631. IF( CRANGE ) THEN
  1632. NTEST = 28
  1633. ABSTOL = UNFL + UNFL
  1634. CALL CSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
  1635. $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1636. $ RWORK, LRWORK, IWORK( 2*N+1 ),
  1637. $ LWORK-2*N, IINFO )
  1638. *
  1639. IF( IINFO.NE.0 ) THEN
  1640. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,I,rel)',
  1641. $ IINFO, N, JTYPE, IOLDSD
  1642. INFO = ABS( IINFO )
  1643. IF( IINFO.LT.0 ) THEN
  1644. RETURN
  1645. ELSE
  1646. RESULT( 28 ) = ULPINV
  1647. GO TO 270
  1648. END IF
  1649. END IF
  1650. *
  1651. *
  1652. * Do test 28
  1653. *
  1654. TEMP2 = TWO*( TWO*N-ONE )*ULP*
  1655. $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
  1656. *
  1657. TEMP1 = ZERO
  1658. DO 230 J = IL, IU
  1659. TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
  1660. $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
  1661. 230 CONTINUE
  1662. *
  1663. RESULT( 28 ) = TEMP1 / TEMP2
  1664. ELSE
  1665. RESULT( 28 ) = ZERO
  1666. END IF
  1667. ELSE
  1668. RESULT( 27 ) = ZERO
  1669. RESULT( 28 ) = ZERO
  1670. END IF
  1671. *
  1672. * Call CSTEMR(V,I) to compute D1 and Z, do tests.
  1673. *
  1674. * Compute D1 and Z
  1675. *
  1676. CALL SCOPY( N, SD, 1, D5, 1 )
  1677. IF( N.GT.0 )
  1678. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1679. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1680. *
  1681. IF( CRANGE ) THEN
  1682. NTEST = 29
  1683. IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1684. IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
  1685. IF( IU.LT.IL ) THEN
  1686. ITEMP = IU
  1687. IU = IL
  1688. IL = ITEMP
  1689. END IF
  1690. CALL CSTEMR( 'V', 'I', N, D5, RWORK, VL, VU, IL, IU,
  1691. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1692. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1693. $ LIWORK-2*N, IINFO )
  1694. IF( IINFO.NE.0 ) THEN
  1695. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,I)', IINFO,
  1696. $ N, JTYPE, IOLDSD
  1697. INFO = ABS( IINFO )
  1698. IF( IINFO.LT.0 ) THEN
  1699. RETURN
  1700. ELSE
  1701. RESULT( 29 ) = ULPINV
  1702. GO TO 280
  1703. END IF
  1704. END IF
  1705. *
  1706. * Do Tests 29 and 30
  1707. *
  1708. *
  1709. * Call CSTEMR to compute D2, do tests.
  1710. *
  1711. * Compute D2
  1712. *
  1713. CALL SCOPY( N, SD, 1, D5, 1 )
  1714. IF( N.GT.0 )
  1715. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1716. *
  1717. NTEST = 31
  1718. CALL CSTEMR( 'N', 'I', N, D5, RWORK, VL, VU, IL, IU,
  1719. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1720. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1721. $ LIWORK-2*N, IINFO )
  1722. IF( IINFO.NE.0 ) THEN
  1723. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,I)', IINFO,
  1724. $ N, JTYPE, IOLDSD
  1725. INFO = ABS( IINFO )
  1726. IF( IINFO.LT.0 ) THEN
  1727. RETURN
  1728. ELSE
  1729. RESULT( 31 ) = ULPINV
  1730. GO TO 280
  1731. END IF
  1732. END IF
  1733. *
  1734. * Do Test 31
  1735. *
  1736. TEMP1 = ZERO
  1737. TEMP2 = ZERO
  1738. *
  1739. DO 240 J = 1, IU - IL + 1
  1740. TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
  1741. $ ABS( D2( J ) ) )
  1742. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1743. 240 CONTINUE
  1744. *
  1745. RESULT( 31 ) = TEMP2 / MAX( UNFL,
  1746. $ ULP*MAX( TEMP1, TEMP2 ) )
  1747. *
  1748. *
  1749. * Call CSTEMR(V,V) to compute D1 and Z, do tests.
  1750. *
  1751. * Compute D1 and Z
  1752. *
  1753. CALL SCOPY( N, SD, 1, D5, 1 )
  1754. IF( N.GT.0 )
  1755. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1756. CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
  1757. *
  1758. NTEST = 32
  1759. *
  1760. IF( N.GT.0 ) THEN
  1761. IF( IL.NE.1 ) THEN
  1762. VL = D2( IL ) - MAX( HALF*
  1763. $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
  1764. $ TWO*RTUNFL )
  1765. ELSE
  1766. VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
  1767. $ ULP*ANORM, TWO*RTUNFL )
  1768. END IF
  1769. IF( IU.NE.N ) THEN
  1770. VU = D2( IU ) + MAX( HALF*
  1771. $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
  1772. $ TWO*RTUNFL )
  1773. ELSE
  1774. VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
  1775. $ ULP*ANORM, TWO*RTUNFL )
  1776. END IF
  1777. ELSE
  1778. VL = ZERO
  1779. VU = ONE
  1780. END IF
  1781. *
  1782. CALL CSTEMR( 'V', 'V', N, D5, RWORK, VL, VU, IL, IU,
  1783. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1784. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1785. $ LIWORK-2*N, IINFO )
  1786. IF( IINFO.NE.0 ) THEN
  1787. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,V)', IINFO,
  1788. $ N, JTYPE, IOLDSD
  1789. INFO = ABS( IINFO )
  1790. IF( IINFO.LT.0 ) THEN
  1791. RETURN
  1792. ELSE
  1793. RESULT( 32 ) = ULPINV
  1794. GO TO 280
  1795. END IF
  1796. END IF
  1797. *
  1798. * Do Tests 32 and 33
  1799. *
  1800. CALL CSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1801. $ M, RWORK, RESULT( 32 ) )
  1802. *
  1803. * Call CSTEMR to compute D2, do tests.
  1804. *
  1805. * Compute D2
  1806. *
  1807. CALL SCOPY( N, SD, 1, D5, 1 )
  1808. IF( N.GT.0 )
  1809. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1810. *
  1811. NTEST = 34
  1812. CALL CSTEMR( 'N', 'V', N, D5, RWORK, VL, VU, IL, IU,
  1813. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1814. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1815. $ LIWORK-2*N, IINFO )
  1816. IF( IINFO.NE.0 ) THEN
  1817. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,V)', IINFO,
  1818. $ N, JTYPE, IOLDSD
  1819. INFO = ABS( IINFO )
  1820. IF( IINFO.LT.0 ) THEN
  1821. RETURN
  1822. ELSE
  1823. RESULT( 34 ) = ULPINV
  1824. GO TO 280
  1825. END IF
  1826. END IF
  1827. *
  1828. * Do Test 34
  1829. *
  1830. TEMP1 = ZERO
  1831. TEMP2 = ZERO
  1832. *
  1833. DO 250 J = 1, IU - IL + 1
  1834. TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
  1835. $ ABS( D2( J ) ) )
  1836. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1837. 250 CONTINUE
  1838. *
  1839. RESULT( 34 ) = TEMP2 / MAX( UNFL,
  1840. $ ULP*MAX( TEMP1, TEMP2 ) )
  1841. ELSE
  1842. RESULT( 29 ) = ZERO
  1843. RESULT( 30 ) = ZERO
  1844. RESULT( 31 ) = ZERO
  1845. RESULT( 32 ) = ZERO
  1846. RESULT( 33 ) = ZERO
  1847. RESULT( 34 ) = ZERO
  1848. END IF
  1849. *
  1850. *
  1851. * Call CSTEMR(V,A) to compute D1 and Z, do tests.
  1852. *
  1853. * Compute D1 and Z
  1854. *
  1855. CALL SCOPY( N, SD, 1, D5, 1 )
  1856. IF( N.GT.0 )
  1857. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1858. *
  1859. NTEST = 35
  1860. *
  1861. CALL CSTEMR( 'V', 'A', N, D5, RWORK, VL, VU, IL, IU,
  1862. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1863. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1864. $ LIWORK-2*N, IINFO )
  1865. IF( IINFO.NE.0 ) THEN
  1866. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,A)', IINFO, N,
  1867. $ JTYPE, IOLDSD
  1868. INFO = ABS( IINFO )
  1869. IF( IINFO.LT.0 ) THEN
  1870. RETURN
  1871. ELSE
  1872. RESULT( 35 ) = ULPINV
  1873. GO TO 280
  1874. END IF
  1875. END IF
  1876. *
  1877. * Do Tests 35 and 36
  1878. *
  1879. CALL CSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
  1880. $ RWORK, RESULT( 35 ) )
  1881. *
  1882. * Call CSTEMR to compute D2, do tests.
  1883. *
  1884. * Compute D2
  1885. *
  1886. CALL SCOPY( N, SD, 1, D5, 1 )
  1887. IF( N.GT.0 )
  1888. $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
  1889. *
  1890. NTEST = 37
  1891. CALL CSTEMR( 'N', 'A', N, D5, RWORK, VL, VU, IL, IU,
  1892. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1893. $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
  1894. $ LIWORK-2*N, IINFO )
  1895. IF( IINFO.NE.0 ) THEN
  1896. WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,A)', IINFO, N,
  1897. $ JTYPE, IOLDSD
  1898. INFO = ABS( IINFO )
  1899. IF( IINFO.LT.0 ) THEN
  1900. RETURN
  1901. ELSE
  1902. RESULT( 37 ) = ULPINV
  1903. GO TO 280
  1904. END IF
  1905. END IF
  1906. *
  1907. * Do Test 34
  1908. *
  1909. TEMP1 = ZERO
  1910. TEMP2 = ZERO
  1911. *
  1912. DO 260 J = 1, N
  1913. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1914. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1915. 260 CONTINUE
  1916. *
  1917. RESULT( 37 ) = TEMP2 / MAX( UNFL,
  1918. $ ULP*MAX( TEMP1, TEMP2 ) )
  1919. END IF
  1920. 270 CONTINUE
  1921. 280 CONTINUE
  1922. NTESTT = NTESTT + NTEST
  1923. *
  1924. * End of Loop -- Check for RESULT(j) > THRESH
  1925. *
  1926. *
  1927. * Print out tests which fail.
  1928. *
  1929. DO 290 JR = 1, NTEST
  1930. IF( RESULT( JR ).GE.THRESH ) THEN
  1931. *
  1932. * If this is the first test to fail,
  1933. * print a header to the data file.
  1934. *
  1935. IF( NERRS.EQ.0 ) THEN
  1936. WRITE( NOUNIT, FMT = 9998 )'CST'
  1937. WRITE( NOUNIT, FMT = 9997 )
  1938. WRITE( NOUNIT, FMT = 9996 )
  1939. WRITE( NOUNIT, FMT = 9995 )'Hermitian'
  1940. WRITE( NOUNIT, FMT = 9994 )
  1941. *
  1942. * Tests performed
  1943. *
  1944. WRITE( NOUNIT, FMT = 9987 )
  1945. END IF
  1946. NERRS = NERRS + 1
  1947. IF( RESULT( JR ).LT.10000.0E0 ) THEN
  1948. WRITE( NOUNIT, FMT = 9989 )N, JTYPE, IOLDSD, JR,
  1949. $ RESULT( JR )
  1950. ELSE
  1951. WRITE( NOUNIT, FMT = 9988 )N, JTYPE, IOLDSD, JR,
  1952. $ RESULT( JR )
  1953. END IF
  1954. END IF
  1955. 290 CONTINUE
  1956. 300 CONTINUE
  1957. 310 CONTINUE
  1958. *
  1959. * Summary
  1960. *
  1961. CALL SLASUM( 'CST', NOUNIT, NERRS, NTESTT )
  1962. RETURN
  1963. *
  1964. 9999 FORMAT( ' CCHKST: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  1965. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1966. *
  1967. 9998 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' )
  1968. 9997 FORMAT( ' Matrix types (see CCHKST for details): ' )
  1969. *
  1970. 9996 FORMAT( / ' Special Matrices:',
  1971. $ / ' 1=Zero matrix. ',
  1972. $ ' 5=Diagonal: clustered entries.',
  1973. $ / ' 2=Identity matrix. ',
  1974. $ ' 6=Diagonal: large, evenly spaced.',
  1975. $ / ' 3=Diagonal: evenly spaced entries. ',
  1976. $ ' 7=Diagonal: small, evenly spaced.',
  1977. $ / ' 4=Diagonal: geometr. spaced entries.' )
  1978. 9995 FORMAT( ' Dense ', A, ' Matrices:',
  1979. $ / ' 8=Evenly spaced eigenvals. ',
  1980. $ ' 12=Small, evenly spaced eigenvals.',
  1981. $ / ' 9=Geometrically spaced eigenvals. ',
  1982. $ ' 13=Matrix with random O(1) entries.',
  1983. $ / ' 10=Clustered eigenvalues. ',
  1984. $ ' 14=Matrix with large random entries.',
  1985. $ / ' 11=Large, evenly spaced eigenvals. ',
  1986. $ ' 15=Matrix with small random entries.' )
  1987. 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
  1988. $ / ' 17=Positive definite, geometrically spaced eigenvlaues',
  1989. $ / ' 18=Positive definite, clustered eigenvalues',
  1990. $ / ' 19=Positive definite, small evenly spaced eigenvalues',
  1991. $ / ' 20=Positive definite, large evenly spaced eigenvalues',
  1992. $ / ' 21=Diagonally dominant tridiagonal, geometrically',
  1993. $ ' spaced eigenvalues' )
  1994. *
  1995. 9989 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
  1996. $ 4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 )
  1997. 9988 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
  1998. $ 4( I4, ',' ), ' result ', I3, ' is', 1P, E10.3 )
  1999. *
  2000. 9987 FORMAT( / 'Test performed: see CCHKST for details.', / )
  2001. * End of CCHKST
  2002. *
  2003. END